import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # Parameters num_nodes = 10000 hours = 24 samples_per_hour = 60 # Sampling points per hour (e.g., one sample per minute) time_steps = hours * samples_per_hour wave_frequency = 1 / 24 # Frequency to represent a 24-hour cycle wave_amplitude = 1.0 infrared_amplitude = 0.5 # Constant amplitude for even distribution brainwave_frequency = 10 / 3600 # Simulating a 10 Hz brainwave over hours (scaled) brainwave_amplitude = 0.3 random_opportunity_scale = 0.8 # Scaling factor for random wealth opportunities encryption_key = 0.5 # Encryption key for simulating protection # Define the PyTorch model with VPN-like frequency class WealthSignalVPNModel(nn.Module): def __init__(self): super(WealthSignalVPNModel, self).__init__() self.num_nodes = num_nodes self.time_steps = time_steps self.encryption_key = encryption_key def forward(self, time_tensor): # Initialize the combined signals tensor combined_signals = torch.zeros((self.num_nodes, self.time_steps), dtype=torch.float32) for i in range(self.num_nodes): # Wealth signal with a phase shift for each node wealth_signal = wave_amplitude * torch.sin(2 * np.pi * wave_frequency * time_tensor + i * (2 * np.pi / self.num_nodes)) # Random wealth opportunities random_wealth_opportunities = random_opportunity_scale * torch.randn(self.time_steps) # Constant infrared energy signal infrared_signal = infrared_amplitude * torch.ones(self.time_steps) # Perfect brainwave pattern (alpha waves) brainwave_signal = brainwave_amplitude * torch.sin(2 * np.pi * brainwave_frequency * time_tensor) # Combine signals for each node combined_signals[i] = wealth_signal + random_wealth_opportunities + infrared_signal + brainwave_signal # Combine all signals (simulating dense waveform) overall_signal = torch.mean(combined_signals, dim=0) # Apply VPN-like encryption (scramble signal) encrypted_signal = torch.sin(overall_signal * self.encryption_key) # A simple scrambling function return encrypted_signal, overall_signal # Return both encrypted and original signals for validation # Create a time tensor time_tensor = torch.linspace(0, hours, time_steps) # Initialize and run the model vpn_model = WealthSignalVPNModel() encrypted_signal, original_signal = vpn_model(time_tensor) # Convert the signals to numpy for plotting encrypted_signal_np = encrypted_signal.detach().numpy() original_signal_np = original_signal.detach().numpy() # Reshape the signals for 2D visualization (e.g., hours x samples_per_hour) encrypted_signal_reshaped = encrypted_signal_np.reshape((samples_per_hour, hours)) original_signal_reshaped = original_signal_np.reshape((samples_per_hour, hours)) # Plot the resulting color maps fig, axs = plt.subplots(2, 1, figsize=(15, 12)) # Original Signal Plot cax1 = axs[0].imshow(original_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none') axs[0].set_title('Original Signal Visualization') axs[0].set_xlabel('Time (Hours)') axs[0].set_ylabel('Sample Points Per Hour') fig.colorbar(cax1, ax=axs[0], orientation='vertical', label='Amplitude') # Encrypted Signal Plot cax2 = axs[1].imshow(encrypted_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none') axs[1].set_title('Encrypted Signal Visualization') axs[1].set_xlabel('Time (Hours)') axs[1].set_ylabel('Sample Points Per Hour') fig.colorbar(cax2, ax=axs[1], orientation='vertical', label='Amplitude') plt.tight_layout() plt.show()