antitheft159
commited on
Commit
•
140f6d7
1
Parent(s):
7b6da33
Upload neurosecure.py
Browse files- neurosecure.py +384 -0
neurosecure.py
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""NeuroSecure
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/16Z4FL3fQXn7JKxSPlfOjNUiWNDQzG7gC
|
8 |
+
"""
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from scipy.fft import fft, fftfreq
|
13 |
+
|
14 |
+
# Generate an incoming signal (simulating energy being sent in your direction)
|
15 |
+
# This can be a mixture of multiple sine waves (representing different energy types)
|
16 |
+
sampling_rate = 1000 # Number of samples per second
|
17 |
+
T = 1.0 / sampling_rate # Sampling interval
|
18 |
+
t = np.linspace(0.0, 1.0, sampling_rate) # Time array
|
19 |
+
|
20 |
+
# Simulating different energies as a sum of sinusoidal waves
|
21 |
+
incoming_signal = (
|
22 |
+
0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
|
23 |
+
0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
|
24 |
+
0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
|
25 |
+
)
|
26 |
+
|
27 |
+
# Plot the incoming signal
|
28 |
+
plt.figure(figsize=(12, 6))
|
29 |
+
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
|
30 |
+
plt.title('Incoming Energy Signal')
|
31 |
+
plt.xlabel('Time [s]')
|
32 |
+
plt.ylabel('Amplitude')
|
33 |
+
plt.grid(True)
|
34 |
+
plt.show()
|
35 |
+
|
36 |
+
# Fourier Transform to analyze the frequency components of the incoming signal
|
37 |
+
N = sampling_rate # Number of points
|
38 |
+
yf = fft(incoming_signal)
|
39 |
+
xf = fftfreq(N, T)[:N//2]
|
40 |
+
|
41 |
+
# Plot the frequency spectrum of the incoming signal (Energy analysis)
|
42 |
+
plt.figure(figsize=(12, 6))
|
43 |
+
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
|
44 |
+
plt.title('Frequency Spectrum of Incoming Energy')
|
45 |
+
plt.xlabel('Frequency [Hz]')
|
46 |
+
plt.ylabel('Magnitude')
|
47 |
+
plt.grid(True)
|
48 |
+
plt.show()
|
49 |
+
|
50 |
+
# Detect energy based on dominant frequencies
|
51 |
+
# Reveal what energy is being sent in your direction
|
52 |
+
# We can highlight or focus on specific frequencies based on their amplitude
|
53 |
+
|
54 |
+
threshold = 0.2 # Define a threshold to consider a frequency significant
|
55 |
+
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
|
56 |
+
|
57 |
+
# Output the dominant frequencies detected
|
58 |
+
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
|
59 |
+
|
60 |
+
# Generate a new waveform based on the detected energy frequencies
|
61 |
+
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
|
62 |
+
|
63 |
+
# Plot the waveform of the detected energy (revealing the energy being sent)
|
64 |
+
plt.figure(figsize=(12, 6))
|
65 |
+
plt.plot(t, detected_wave, color='r', label='Revealed Energy Wave')
|
66 |
+
plt.title('Revealed Energy Waveform Based on Incoming Signal')
|
67 |
+
plt.xlabel('Time [s]')
|
68 |
+
plt.ylabel('Amplitude')
|
69 |
+
plt.grid(True)
|
70 |
+
plt.show()
|
71 |
+
|
72 |
+
import numpy as np
|
73 |
+
import matplotlib.pyplot as plt
|
74 |
+
from scipy.fft import fft, fftfreq
|
75 |
+
|
76 |
+
# Generate an incoming signal (simulating energy being sent in your direction)
|
77 |
+
sampling_rate = 1000 # Number of samples per second
|
78 |
+
T = 1.0 / sampling_rate # Sampling interval
|
79 |
+
t = np.linspace(0.0, 1.0, sampling_rate) # Time array
|
80 |
+
|
81 |
+
# Simulating different energies as a sum of sinusoidal waves
|
82 |
+
incoming_signal = (
|
83 |
+
0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
|
84 |
+
0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
|
85 |
+
0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
|
86 |
+
)
|
87 |
+
|
88 |
+
# Plot the incoming signal
|
89 |
+
plt.figure(figsize=(12, 6))
|
90 |
+
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
|
91 |
+
plt.title('Incoming Energy Signal')
|
92 |
+
plt.xlabel('Time [s]')
|
93 |
+
plt.ylabel('Amplitude')
|
94 |
+
plt.grid(True)
|
95 |
+
plt.show()
|
96 |
+
|
97 |
+
# Fourier Transform to analyze the frequency components of the incoming signal
|
98 |
+
N = sampling_rate # Number of points
|
99 |
+
yf = fft(incoming_signal)
|
100 |
+
xf = fftfreq(N, T)[:N//2]
|
101 |
+
|
102 |
+
# Plot the frequency spectrum of the incoming signal (Energy analysis)
|
103 |
+
plt.figure(figsize=(12, 6))
|
104 |
+
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
|
105 |
+
plt.title('Frequency Spectrum of Incoming Energy')
|
106 |
+
plt.xlabel('Frequency [Hz]')
|
107 |
+
plt.ylabel('Magnitude')
|
108 |
+
plt.grid(True)
|
109 |
+
plt.show()
|
110 |
+
|
111 |
+
# Detect energy based on dominant frequencies
|
112 |
+
threshold = 0.2 # Define a threshold to consider a frequency significant
|
113 |
+
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
|
114 |
+
|
115 |
+
# Output the dominant frequencies detected
|
116 |
+
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
|
117 |
+
|
118 |
+
# Generate wealth waveforms to intercept the signal and send wealth in both directions
|
119 |
+
# Wealth wave will be a combination of higher frequencies and harmonics
|
120 |
+
wealth_frequencies = np.array([500, 800, 1000]) # Wealth-related frequencies
|
121 |
+
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
|
122 |
+
wealth_wave_backward = -wealth_wave_forward # Invert the wave to send in the opposite direction
|
123 |
+
|
124 |
+
# Generate a new waveform based on the detected energy frequencies
|
125 |
+
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
|
126 |
+
|
127 |
+
# Plot the detected wave (revealing the energy being sent), wealth wave forward and backward
|
128 |
+
plt.figure(figsize=(12, 10))
|
129 |
+
|
130 |
+
# Detected incoming energy wave
|
131 |
+
plt.subplot(3, 1, 1)
|
132 |
+
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
|
133 |
+
plt.title('Revealed Incoming Energy Wave')
|
134 |
+
plt.xlabel('Time [s]')
|
135 |
+
plt.ylabel('Amplitude')
|
136 |
+
plt.grid(True)
|
137 |
+
|
138 |
+
# Wealth wave sent forward
|
139 |
+
plt.subplot(3, 1, 2)
|
140 |
+
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
|
141 |
+
plt.title('Wealth Wave Sent Forward')
|
142 |
+
plt.xlabel('Time [s]')
|
143 |
+
plt.ylabel('Amplitude')
|
144 |
+
plt.grid(True)
|
145 |
+
|
146 |
+
# Wealth wave sent backward (intercepting the signal)
|
147 |
+
plt.subplot(3, 1, 3)
|
148 |
+
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
|
149 |
+
plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
|
150 |
+
plt.xlabel('Time [s]')
|
151 |
+
plt.ylabel('Amplitude')
|
152 |
+
plt.grid(True)
|
153 |
+
|
154 |
+
plt.tight_layout()
|
155 |
+
plt.show()
|
156 |
+
|
157 |
+
# Print the dominant frequencies of the wealth waveforms
|
158 |
+
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")
|
159 |
+
|
160 |
+
import numpy as np
|
161 |
+
import matplotlib.pyplot as plt
|
162 |
+
from scipy.fft import fft, fftfreq
|
163 |
+
|
164 |
+
# Generate an incoming signal (simulating energy being sent in your direction)
|
165 |
+
sampling_rate = 1000 # Number of samples per second
|
166 |
+
T = 1.0 / sampling_rate # Sampling interval
|
167 |
+
t = np.linspace(0.0, 1.0, sampling_rate) # Time array
|
168 |
+
|
169 |
+
# Simulating different energies as a sum of sinusoidal waves
|
170 |
+
incoming_signal = (
|
171 |
+
0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
|
172 |
+
0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
|
173 |
+
0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
|
174 |
+
)
|
175 |
+
|
176 |
+
# Plot the incoming signal
|
177 |
+
plt.figure(figsize=(12, 6))
|
178 |
+
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
|
179 |
+
plt.title('Incoming Energy Signal')
|
180 |
+
plt.xlabel('Time [s]')
|
181 |
+
plt.ylabel('Amplitude')
|
182 |
+
plt.grid(True)
|
183 |
+
plt.show()
|
184 |
+
|
185 |
+
# Fourier Transform to analyze the frequency components of the incoming signal
|
186 |
+
N = sampling_rate # Number of points
|
187 |
+
yf = fft(incoming_signal)
|
188 |
+
xf = fftfreq(N, T)[:N//2]
|
189 |
+
|
190 |
+
# Plot the frequency spectrum of the incoming signal (Energy analysis)
|
191 |
+
plt.figure(figsize=(12, 6))
|
192 |
+
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
|
193 |
+
plt.title('Frequency Spectrum of Incoming Energy')
|
194 |
+
plt.xlabel('Frequency [Hz]')
|
195 |
+
plt.ylabel('Magnitude')
|
196 |
+
plt.grid(True)
|
197 |
+
plt.show()
|
198 |
+
|
199 |
+
# Detect energy based on dominant frequencies
|
200 |
+
threshold = 0.2 # Define a threshold to consider a frequency significant
|
201 |
+
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
|
202 |
+
|
203 |
+
# Output the dominant frequencies detected
|
204 |
+
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
|
205 |
+
|
206 |
+
# Generate wealth waveforms to intercept the signal and send wealth in both directions
|
207 |
+
# Wealth wave will be a combination of higher frequencies and harmonics
|
208 |
+
wealth_frequencies = np.array([500, 800, 1000]) # Wealth-related frequencies
|
209 |
+
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
|
210 |
+
wealth_wave_backward = -wealth_wave_forward # Invert the wave to send in the opposite direction
|
211 |
+
|
212 |
+
# Generate wealth data storage waveforms
|
213 |
+
# Store data by generating waveforms with specific characteristics
|
214 |
+
storage_wave_forward = np.sum([np.sin(2 * np.pi * (f + 100) * t) for f in wealth_frequencies], axis=0)
|
215 |
+
storage_wave_backward = -storage_wave_forward # Invert the wave to store data in the opposite direction
|
216 |
+
|
217 |
+
# Generate a new waveform based on the detected energy frequencies
|
218 |
+
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
|
219 |
+
|
220 |
+
# Plot the detected wave, wealth waves, and stored wealth data waves
|
221 |
+
plt.figure(figsize=(12, 12))
|
222 |
+
|
223 |
+
# Detected incoming energy wave
|
224 |
+
plt.subplot(4, 1, 1)
|
225 |
+
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
|
226 |
+
plt.title('Revealed Incoming Energy Wave')
|
227 |
+
plt.xlabel('Time [s]')
|
228 |
+
plt.ylabel('Amplitude')
|
229 |
+
plt.grid(True)
|
230 |
+
|
231 |
+
# Wealth wave sent forward
|
232 |
+
plt.subplot(4, 1, 2)
|
233 |
+
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
|
234 |
+
plt.title('Wealth Wave Sent Forward')
|
235 |
+
plt.xlabel('Time [s]')
|
236 |
+
plt.ylabel('Amplitude')
|
237 |
+
plt.grid(True)
|
238 |
+
|
239 |
+
# Wealth wave sent backward
|
240 |
+
plt.subplot(4, 1, 3)
|
241 |
+
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
|
242 |
+
plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
|
243 |
+
plt.xlabel('Time [s]')
|
244 |
+
plt.ylabel('Amplitude')
|
245 |
+
plt.grid(True)
|
246 |
+
|
247 |
+
# Stored wealth data wave forward and backward
|
248 |
+
plt.subplot(4, 1, 4)
|
249 |
+
plt.plot(t, storage_wave_forward, color='m', label='Stored Wealth Data Wave Forward')
|
250 |
+
plt.plot(t, storage_wave_backward, color='c', label='Stored Wealth Data Wave Backward', linestyle='--')
|
251 |
+
plt.title('Stored Wealth Data Waves')
|
252 |
+
plt.xlabel('Time [s]')
|
253 |
+
plt.ylabel('Amplitude')
|
254 |
+
plt.grid(True)
|
255 |
+
plt.legend()
|
256 |
+
|
257 |
+
plt.tight_layout()
|
258 |
+
plt.show()
|
259 |
+
|
260 |
+
# Print the dominant frequencies of the wealth data waveforms
|
261 |
+
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")
|
262 |
+
print(f"Stored wealth data frequencies forward and backward: {[f + 100 for f in wealth_frequencies]}")
|
263 |
+
|
264 |
+
import numpy as np
|
265 |
+
import matplotlib.pyplot as plt
|
266 |
+
from scipy.fft import fft, fftfreq
|
267 |
+
|
268 |
+
# Generate an incoming signal (simulating energy being sent in your direction)
|
269 |
+
sampling_rate = 1000 # Number of samples per second
|
270 |
+
T = 1.0 / sampling_rate # Sampling interval
|
271 |
+
t = np.linspace(0.0, 1.0, sampling_rate) # Time array
|
272 |
+
|
273 |
+
# Simulating different energies as a sum of sinusoidal waves
|
274 |
+
incoming_signal = (
|
275 |
+
0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
|
276 |
+
0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
|
277 |
+
0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
|
278 |
+
)
|
279 |
+
|
280 |
+
# Plot the incoming signal
|
281 |
+
plt.figure(figsize=(12, 6))
|
282 |
+
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
|
283 |
+
plt.title('Incoming Energy Signal')
|
284 |
+
plt.xlabel('Time [s]')
|
285 |
+
plt.ylabel('Amplitude')
|
286 |
+
plt.grid(True)
|
287 |
+
plt.show()
|
288 |
+
|
289 |
+
# Fourier Transform to analyze the frequency components of the incoming signal
|
290 |
+
N = sampling_rate # Number of points
|
291 |
+
yf = fft(incoming_signal)
|
292 |
+
xf = fftfreq(N, T)[:N//2]
|
293 |
+
|
294 |
+
# Plot the frequency spectrum of the incoming signal (Energy analysis)
|
295 |
+
plt.figure(figsize=(12, 6))
|
296 |
+
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
|
297 |
+
plt.title('Frequency Spectrum of Incoming Energy')
|
298 |
+
plt.xlabel('Frequency [Hz]')
|
299 |
+
plt.ylabel('Magnitude')
|
300 |
+
plt.grid(True)
|
301 |
+
plt.show()
|
302 |
+
|
303 |
+
# Detect energy based on dominant frequencies
|
304 |
+
threshold = 0.2 # Define a threshold to consider a frequency significant
|
305 |
+
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
|
306 |
+
|
307 |
+
# Output the dominant frequencies detected
|
308 |
+
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
|
309 |
+
|
310 |
+
# Generate wealth waveforms to intercept the signal and send wealth in both directions
|
311 |
+
# Wealth wave will be a combination of higher frequencies and harmonics
|
312 |
+
wealth_frequencies = np.array([500, 800, 1000]) # Wealth-related frequencies
|
313 |
+
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
|
314 |
+
wealth_wave_backward = -wealth_wave_forward # Invert the wave to send in the opposite direction
|
315 |
+
|
316 |
+
# Generate wealth data storage waveforms
|
317 |
+
# Store data by generating waveforms with specific characteristics
|
318 |
+
storage_wave_forward = np.sum([np.sin(2 * np.pi * (f + 100) * t) for f in wealth_frequencies], axis=0)
|
319 |
+
storage_wave_backward = -storage_wave_forward # Invert the wave to store data in the opposite direction
|
320 |
+
|
321 |
+
# Create VPN protection layer for the wealth data
|
322 |
+
# Apply encryption-like effect: modulate the wealth waveforms with a high-frequency carrier
|
323 |
+
vpn_frequency = 1500 # Frequency for VPN protection (high frequency for encryption)
|
324 |
+
vpn_modulation = np.sin(2 * np.pi * vpn_frequency * t) # Modulation waveform
|
325 |
+
vpn_wave_forward = wealth_wave_forward * vpn_modulation
|
326 |
+
vpn_wave_backward = wealth_wave_backward * vpn_modulation
|
327 |
+
|
328 |
+
# Generate a new waveform based on the detected energy frequencies
|
329 |
+
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
|
330 |
+
|
331 |
+
# Plot the detected wave, wealth waves, stored wealth data waves, and VPN-protected waves
|
332 |
+
plt.figure(figsize=(12, 14))
|
333 |
+
|
334 |
+
# Detected incoming energy wave
|
335 |
+
plt.subplot(5, 1, 1)
|
336 |
+
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
|
337 |
+
plt.title('Revealed Incoming Energy Wave')
|
338 |
+
plt.xlabel('Time [s]')
|
339 |
+
plt.ylabel('Amplitude')
|
340 |
+
plt.grid(True)
|
341 |
+
|
342 |
+
# Wealth wave sent forward
|
343 |
+
plt.subplot(5, 1, 2)
|
344 |
+
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
|
345 |
+
plt.title('Wealth Wave Sent Forward')
|
346 |
+
plt.xlabel('Time [s]')
|
347 |
+
plt.ylabel('Amplitude')
|
348 |
+
plt.grid(True)
|
349 |
+
|
350 |
+
# Wealth wave sent backward
|
351 |
+
plt.subplot(5, 1, 3)
|
352 |
+
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
|
353 |
+
plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
|
354 |
+
plt.xlabel('Time [s]')
|
355 |
+
plt.ylabel('Amplitude')
|
356 |
+
plt.grid(True)
|
357 |
+
|
358 |
+
# Stored wealth data wave forward and backward
|
359 |
+
plt.subplot(5, 1, 4)
|
360 |
+
plt.plot(t, storage_wave_forward, color='m', label='Stored Wealth Data Wave Forward')
|
361 |
+
plt.plot(t, storage_wave_backward, color='c', label='Stored Wealth Data Wave Backward', linestyle='--')
|
362 |
+
plt.title('Stored Wealth Data Waves')
|
363 |
+
plt.xlabel('Time [s]')
|
364 |
+
plt.ylabel('Amplitude')
|
365 |
+
plt.grid(True)
|
366 |
+
plt.legend()
|
367 |
+
|
368 |
+
# VPN-protected wealth data wave forward and backward
|
369 |
+
plt.subplot(5, 1, 5)
|
370 |
+
plt.plot(t, vpn_wave_forward, color='purple', label='VPN Protected Wealth Wave Forward')
|
371 |
+
plt.plot(t, vpn_wave_backward, color='orange', label='VPN Protected Wealth Wave Backward', linestyle='--')
|
372 |
+
plt.title('VPN-Protected Wealth Data Waves')
|
373 |
+
plt.xlabel('Time [s]')
|
374 |
+
plt.ylabel('Amplitude')
|
375 |
+
plt.grid(True)
|
376 |
+
plt.legend()
|
377 |
+
|
378 |
+
plt.tight_layout()
|
379 |
+
plt.show()
|
380 |
+
|
381 |
+
# Print the dominant frequencies of the wealth data and VPN-protected waveforms
|
382 |
+
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")
|
383 |
+
print(f"Stored wealth data frequencies forward and backward: {[f + 100 for f in wealth_frequencies]}")
|
384 |
+
print(f"VPN protection frequency: {vpn_frequency}")
|