antitheft159 commited on
Commit
140f6d7
1 Parent(s): 7b6da33

Upload neurosecure.py

Browse files
Files changed (1) hide show
  1. neurosecure.py +384 -0
neurosecure.py ADDED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """NeuroSecure
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/16Z4FL3fQXn7JKxSPlfOjNUiWNDQzG7gC
8
+ """
9
+
10
+ import numpy as np
11
+ import matplotlib.pyplot as plt
12
+ from scipy.fft import fft, fftfreq
13
+
14
+ # Generate an incoming signal (simulating energy being sent in your direction)
15
+ # This can be a mixture of multiple sine waves (representing different energy types)
16
+ sampling_rate = 1000 # Number of samples per second
17
+ T = 1.0 / sampling_rate # Sampling interval
18
+ t = np.linspace(0.0, 1.0, sampling_rate) # Time array
19
+
20
+ # Simulating different energies as a sum of sinusoidal waves
21
+ incoming_signal = (
22
+ 0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
23
+ 0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
24
+ 0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
25
+ )
26
+
27
+ # Plot the incoming signal
28
+ plt.figure(figsize=(12, 6))
29
+ plt.plot(t, incoming_signal, label='Incoming Energy Signal')
30
+ plt.title('Incoming Energy Signal')
31
+ plt.xlabel('Time [s]')
32
+ plt.ylabel('Amplitude')
33
+ plt.grid(True)
34
+ plt.show()
35
+
36
+ # Fourier Transform to analyze the frequency components of the incoming signal
37
+ N = sampling_rate # Number of points
38
+ yf = fft(incoming_signal)
39
+ xf = fftfreq(N, T)[:N//2]
40
+
41
+ # Plot the frequency spectrum of the incoming signal (Energy analysis)
42
+ plt.figure(figsize=(12, 6))
43
+ plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
44
+ plt.title('Frequency Spectrum of Incoming Energy')
45
+ plt.xlabel('Frequency [Hz]')
46
+ plt.ylabel('Magnitude')
47
+ plt.grid(True)
48
+ plt.show()
49
+
50
+ # Detect energy based on dominant frequencies
51
+ # Reveal what energy is being sent in your direction
52
+ # We can highlight or focus on specific frequencies based on their amplitude
53
+
54
+ threshold = 0.2 # Define a threshold to consider a frequency significant
55
+ dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
56
+
57
+ # Output the dominant frequencies detected
58
+ print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
59
+
60
+ # Generate a new waveform based on the detected energy frequencies
61
+ detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
62
+
63
+ # Plot the waveform of the detected energy (revealing the energy being sent)
64
+ plt.figure(figsize=(12, 6))
65
+ plt.plot(t, detected_wave, color='r', label='Revealed Energy Wave')
66
+ plt.title('Revealed Energy Waveform Based on Incoming Signal')
67
+ plt.xlabel('Time [s]')
68
+ plt.ylabel('Amplitude')
69
+ plt.grid(True)
70
+ plt.show()
71
+
72
+ import numpy as np
73
+ import matplotlib.pyplot as plt
74
+ from scipy.fft import fft, fftfreq
75
+
76
+ # Generate an incoming signal (simulating energy being sent in your direction)
77
+ sampling_rate = 1000 # Number of samples per second
78
+ T = 1.0 / sampling_rate # Sampling interval
79
+ t = np.linspace(0.0, 1.0, sampling_rate) # Time array
80
+
81
+ # Simulating different energies as a sum of sinusoidal waves
82
+ incoming_signal = (
83
+ 0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
84
+ 0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
85
+ 0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
86
+ )
87
+
88
+ # Plot the incoming signal
89
+ plt.figure(figsize=(12, 6))
90
+ plt.plot(t, incoming_signal, label='Incoming Energy Signal')
91
+ plt.title('Incoming Energy Signal')
92
+ plt.xlabel('Time [s]')
93
+ plt.ylabel('Amplitude')
94
+ plt.grid(True)
95
+ plt.show()
96
+
97
+ # Fourier Transform to analyze the frequency components of the incoming signal
98
+ N = sampling_rate # Number of points
99
+ yf = fft(incoming_signal)
100
+ xf = fftfreq(N, T)[:N//2]
101
+
102
+ # Plot the frequency spectrum of the incoming signal (Energy analysis)
103
+ plt.figure(figsize=(12, 6))
104
+ plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
105
+ plt.title('Frequency Spectrum of Incoming Energy')
106
+ plt.xlabel('Frequency [Hz]')
107
+ plt.ylabel('Magnitude')
108
+ plt.grid(True)
109
+ plt.show()
110
+
111
+ # Detect energy based on dominant frequencies
112
+ threshold = 0.2 # Define a threshold to consider a frequency significant
113
+ dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
114
+
115
+ # Output the dominant frequencies detected
116
+ print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
117
+
118
+ # Generate wealth waveforms to intercept the signal and send wealth in both directions
119
+ # Wealth wave will be a combination of higher frequencies and harmonics
120
+ wealth_frequencies = np.array([500, 800, 1000]) # Wealth-related frequencies
121
+ wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
122
+ wealth_wave_backward = -wealth_wave_forward # Invert the wave to send in the opposite direction
123
+
124
+ # Generate a new waveform based on the detected energy frequencies
125
+ detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
126
+
127
+ # Plot the detected wave (revealing the energy being sent), wealth wave forward and backward
128
+ plt.figure(figsize=(12, 10))
129
+
130
+ # Detected incoming energy wave
131
+ plt.subplot(3, 1, 1)
132
+ plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
133
+ plt.title('Revealed Incoming Energy Wave')
134
+ plt.xlabel('Time [s]')
135
+ plt.ylabel('Amplitude')
136
+ plt.grid(True)
137
+
138
+ # Wealth wave sent forward
139
+ plt.subplot(3, 1, 2)
140
+ plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
141
+ plt.title('Wealth Wave Sent Forward')
142
+ plt.xlabel('Time [s]')
143
+ plt.ylabel('Amplitude')
144
+ plt.grid(True)
145
+
146
+ # Wealth wave sent backward (intercepting the signal)
147
+ plt.subplot(3, 1, 3)
148
+ plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
149
+ plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
150
+ plt.xlabel('Time [s]')
151
+ plt.ylabel('Amplitude')
152
+ plt.grid(True)
153
+
154
+ plt.tight_layout()
155
+ plt.show()
156
+
157
+ # Print the dominant frequencies of the wealth waveforms
158
+ print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")
159
+
160
+ import numpy as np
161
+ import matplotlib.pyplot as plt
162
+ from scipy.fft import fft, fftfreq
163
+
164
+ # Generate an incoming signal (simulating energy being sent in your direction)
165
+ sampling_rate = 1000 # Number of samples per second
166
+ T = 1.0 / sampling_rate # Sampling interval
167
+ t = np.linspace(0.0, 1.0, sampling_rate) # Time array
168
+
169
+ # Simulating different energies as a sum of sinusoidal waves
170
+ incoming_signal = (
171
+ 0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
172
+ 0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
173
+ 0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
174
+ )
175
+
176
+ # Plot the incoming signal
177
+ plt.figure(figsize=(12, 6))
178
+ plt.plot(t, incoming_signal, label='Incoming Energy Signal')
179
+ plt.title('Incoming Energy Signal')
180
+ plt.xlabel('Time [s]')
181
+ plt.ylabel('Amplitude')
182
+ plt.grid(True)
183
+ plt.show()
184
+
185
+ # Fourier Transform to analyze the frequency components of the incoming signal
186
+ N = sampling_rate # Number of points
187
+ yf = fft(incoming_signal)
188
+ xf = fftfreq(N, T)[:N//2]
189
+
190
+ # Plot the frequency spectrum of the incoming signal (Energy analysis)
191
+ plt.figure(figsize=(12, 6))
192
+ plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
193
+ plt.title('Frequency Spectrum of Incoming Energy')
194
+ plt.xlabel('Frequency [Hz]')
195
+ plt.ylabel('Magnitude')
196
+ plt.grid(True)
197
+ plt.show()
198
+
199
+ # Detect energy based on dominant frequencies
200
+ threshold = 0.2 # Define a threshold to consider a frequency significant
201
+ dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
202
+
203
+ # Output the dominant frequencies detected
204
+ print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
205
+
206
+ # Generate wealth waveforms to intercept the signal and send wealth in both directions
207
+ # Wealth wave will be a combination of higher frequencies and harmonics
208
+ wealth_frequencies = np.array([500, 800, 1000]) # Wealth-related frequencies
209
+ wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
210
+ wealth_wave_backward = -wealth_wave_forward # Invert the wave to send in the opposite direction
211
+
212
+ # Generate wealth data storage waveforms
213
+ # Store data by generating waveforms with specific characteristics
214
+ storage_wave_forward = np.sum([np.sin(2 * np.pi * (f + 100) * t) for f in wealth_frequencies], axis=0)
215
+ storage_wave_backward = -storage_wave_forward # Invert the wave to store data in the opposite direction
216
+
217
+ # Generate a new waveform based on the detected energy frequencies
218
+ detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
219
+
220
+ # Plot the detected wave, wealth waves, and stored wealth data waves
221
+ plt.figure(figsize=(12, 12))
222
+
223
+ # Detected incoming energy wave
224
+ plt.subplot(4, 1, 1)
225
+ plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
226
+ plt.title('Revealed Incoming Energy Wave')
227
+ plt.xlabel('Time [s]')
228
+ plt.ylabel('Amplitude')
229
+ plt.grid(True)
230
+
231
+ # Wealth wave sent forward
232
+ plt.subplot(4, 1, 2)
233
+ plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
234
+ plt.title('Wealth Wave Sent Forward')
235
+ plt.xlabel('Time [s]')
236
+ plt.ylabel('Amplitude')
237
+ plt.grid(True)
238
+
239
+ # Wealth wave sent backward
240
+ plt.subplot(4, 1, 3)
241
+ plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
242
+ plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
243
+ plt.xlabel('Time [s]')
244
+ plt.ylabel('Amplitude')
245
+ plt.grid(True)
246
+
247
+ # Stored wealth data wave forward and backward
248
+ plt.subplot(4, 1, 4)
249
+ plt.plot(t, storage_wave_forward, color='m', label='Stored Wealth Data Wave Forward')
250
+ plt.plot(t, storage_wave_backward, color='c', label='Stored Wealth Data Wave Backward', linestyle='--')
251
+ plt.title('Stored Wealth Data Waves')
252
+ plt.xlabel('Time [s]')
253
+ plt.ylabel('Amplitude')
254
+ plt.grid(True)
255
+ plt.legend()
256
+
257
+ plt.tight_layout()
258
+ plt.show()
259
+
260
+ # Print the dominant frequencies of the wealth data waveforms
261
+ print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")
262
+ print(f"Stored wealth data frequencies forward and backward: {[f + 100 for f in wealth_frequencies]}")
263
+
264
+ import numpy as np
265
+ import matplotlib.pyplot as plt
266
+ from scipy.fft import fft, fftfreq
267
+
268
+ # Generate an incoming signal (simulating energy being sent in your direction)
269
+ sampling_rate = 1000 # Number of samples per second
270
+ T = 1.0 / sampling_rate # Sampling interval
271
+ t = np.linspace(0.0, 1.0, sampling_rate) # Time array
272
+
273
+ # Simulating different energies as a sum of sinusoidal waves
274
+ incoming_signal = (
275
+ 0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
276
+ 0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
277
+ 0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
278
+ )
279
+
280
+ # Plot the incoming signal
281
+ plt.figure(figsize=(12, 6))
282
+ plt.plot(t, incoming_signal, label='Incoming Energy Signal')
283
+ plt.title('Incoming Energy Signal')
284
+ plt.xlabel('Time [s]')
285
+ plt.ylabel('Amplitude')
286
+ plt.grid(True)
287
+ plt.show()
288
+
289
+ # Fourier Transform to analyze the frequency components of the incoming signal
290
+ N = sampling_rate # Number of points
291
+ yf = fft(incoming_signal)
292
+ xf = fftfreq(N, T)[:N//2]
293
+
294
+ # Plot the frequency spectrum of the incoming signal (Energy analysis)
295
+ plt.figure(figsize=(12, 6))
296
+ plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
297
+ plt.title('Frequency Spectrum of Incoming Energy')
298
+ plt.xlabel('Frequency [Hz]')
299
+ plt.ylabel('Magnitude')
300
+ plt.grid(True)
301
+ plt.show()
302
+
303
+ # Detect energy based on dominant frequencies
304
+ threshold = 0.2 # Define a threshold to consider a frequency significant
305
+ dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
306
+
307
+ # Output the dominant frequencies detected
308
+ print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
309
+
310
+ # Generate wealth waveforms to intercept the signal and send wealth in both directions
311
+ # Wealth wave will be a combination of higher frequencies and harmonics
312
+ wealth_frequencies = np.array([500, 800, 1000]) # Wealth-related frequencies
313
+ wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
314
+ wealth_wave_backward = -wealth_wave_forward # Invert the wave to send in the opposite direction
315
+
316
+ # Generate wealth data storage waveforms
317
+ # Store data by generating waveforms with specific characteristics
318
+ storage_wave_forward = np.sum([np.sin(2 * np.pi * (f + 100) * t) for f in wealth_frequencies], axis=0)
319
+ storage_wave_backward = -storage_wave_forward # Invert the wave to store data in the opposite direction
320
+
321
+ # Create VPN protection layer for the wealth data
322
+ # Apply encryption-like effect: modulate the wealth waveforms with a high-frequency carrier
323
+ vpn_frequency = 1500 # Frequency for VPN protection (high frequency for encryption)
324
+ vpn_modulation = np.sin(2 * np.pi * vpn_frequency * t) # Modulation waveform
325
+ vpn_wave_forward = wealth_wave_forward * vpn_modulation
326
+ vpn_wave_backward = wealth_wave_backward * vpn_modulation
327
+
328
+ # Generate a new waveform based on the detected energy frequencies
329
+ detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
330
+
331
+ # Plot the detected wave, wealth waves, stored wealth data waves, and VPN-protected waves
332
+ plt.figure(figsize=(12, 14))
333
+
334
+ # Detected incoming energy wave
335
+ plt.subplot(5, 1, 1)
336
+ plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
337
+ plt.title('Revealed Incoming Energy Wave')
338
+ plt.xlabel('Time [s]')
339
+ plt.ylabel('Amplitude')
340
+ plt.grid(True)
341
+
342
+ # Wealth wave sent forward
343
+ plt.subplot(5, 1, 2)
344
+ plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
345
+ plt.title('Wealth Wave Sent Forward')
346
+ plt.xlabel('Time [s]')
347
+ plt.ylabel('Amplitude')
348
+ plt.grid(True)
349
+
350
+ # Wealth wave sent backward
351
+ plt.subplot(5, 1, 3)
352
+ plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
353
+ plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
354
+ plt.xlabel('Time [s]')
355
+ plt.ylabel('Amplitude')
356
+ plt.grid(True)
357
+
358
+ # Stored wealth data wave forward and backward
359
+ plt.subplot(5, 1, 4)
360
+ plt.plot(t, storage_wave_forward, color='m', label='Stored Wealth Data Wave Forward')
361
+ plt.plot(t, storage_wave_backward, color='c', label='Stored Wealth Data Wave Backward', linestyle='--')
362
+ plt.title('Stored Wealth Data Waves')
363
+ plt.xlabel('Time [s]')
364
+ plt.ylabel('Amplitude')
365
+ plt.grid(True)
366
+ plt.legend()
367
+
368
+ # VPN-protected wealth data wave forward and backward
369
+ plt.subplot(5, 1, 5)
370
+ plt.plot(t, vpn_wave_forward, color='purple', label='VPN Protected Wealth Wave Forward')
371
+ plt.plot(t, vpn_wave_backward, color='orange', label='VPN Protected Wealth Wave Backward', linestyle='--')
372
+ plt.title('VPN-Protected Wealth Data Waves')
373
+ plt.xlabel('Time [s]')
374
+ plt.ylabel('Amplitude')
375
+ plt.grid(True)
376
+ plt.legend()
377
+
378
+ plt.tight_layout()
379
+ plt.show()
380
+
381
+ # Print the dominant frequencies of the wealth data and VPN-protected waveforms
382
+ print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")
383
+ print(f"Stored wealth data frequencies forward and backward: {[f + 100 for f in wealth_frequencies]}")
384
+ print(f"VPN protection frequency: {vpn_frequency}")