antitheft159 commited on
Commit
344f1b1
1 Parent(s): 71d8f8b

Upload 2 files

Browse files
Files changed (2) hide show
  1. Screenshot (940).png +0 -0
  2. securewealth_transmittor.py +266 -0
Screenshot (940).png ADDED
securewealth_transmittor.py ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """SecureWealth Transmittor
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1bRloWQX62u7zc3Bzev_Lg_yNfqOYOZ7t
8
+ """
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+
13
+ # Define a simple neural network to generate random frequencies
14
+ class FrequencyMaskingNet(nn.Module):
15
+ def __init__(self, input_size=1, hidden_size=64, output_size=1):
16
+ super(FrequencyMaskingNet, self).__init__()
17
+
18
+ self.fc1 = nn.Linear(input_size, hidden_size)
19
+ self.fc2 = nn.Linear(hidden_size, hidden_size)
20
+ self.fc3 = nn.Linear(hidden_size, output_size)
21
+ self.relu = nn.ReLU()
22
+
23
+ def forward(self, x):
24
+ x = self.relu(self.fc1(x))
25
+ x = self.relu(self.fc2(x))
26
+ x = self.fc3(x)
27
+ return x
28
+
29
+ # Function to create random frequencies to mask IP data
30
+ def generate_frequencies(ip, model, iterations=100):
31
+ # Convert the IP address (dummy) into tensor format
32
+ ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
33
+
34
+ # Create a list to store frequency signals
35
+ frequencies = []
36
+
37
+ # Iterate and generate frequencies using the neural network
38
+ for _ in range(iterations):
39
+ # Generate a masked frequency
40
+ frequency = model(ip_tensor)
41
+ frequencies.append(frequency.item())
42
+
43
+ return frequencies
44
+
45
+ # Initialize the neural network
46
+ model = FrequencyMaskingNet()
47
+
48
+ # Example IP address to be masked (as a float for simplicity, convert if needed)
49
+ ip_address = 192.168 # Example, could use a different encoding for real IPs
50
+
51
+ # Generate pseudo-random frequencies to mask the IP
52
+ masked_frequencies = generate_frequencies(ip_address, model)
53
+
54
+ print(masked_frequencies)
55
+
56
+ import torch
57
+ import torch.nn as nn
58
+ import matplotlib.pyplot as plt
59
+
60
+ # Define the neural network for generating pseudo-random frequencies
61
+ class FrequencyMaskingNet(nn.Module):
62
+ def __init__(self, input_size=1, hidden_size=64, output_size=1):
63
+ super(FrequencyMaskingNet, self).__init__()
64
+
65
+ self.fc1 = nn.Linear(input_size, hidden_size)
66
+ self.fc2 = nn.Linear(hidden_size, hidden_size)
67
+ self.fc3 = nn.Linear(hidden_size, output_size)
68
+ self.relu = nn.ReLU()
69
+
70
+ def forward(self, x):
71
+ x = self.relu(self.fc1(x))
72
+ x = self.relu(self.fc2(x))
73
+ x = self.fc3(x)
74
+ return x
75
+
76
+ # Function to create random frequencies to mask IP data
77
+ def generate_frequencies(ip, model, iterations=100):
78
+ # Convert the IP address (dummy) into tensor format
79
+ ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
80
+
81
+ # Create a list to store frequency signals
82
+ frequencies = []
83
+
84
+ # Iterate and generate frequencies using the neural network
85
+ for _ in range(iterations):
86
+ # Generate a masked frequency
87
+ frequency = model(ip_tensor)
88
+ frequencies.append(frequency.item())
89
+
90
+ return frequencies
91
+
92
+ # Function to visualize frequencies as a waveform
93
+ def plot_frequencies(frequencies):
94
+ plt.figure(figsize=(10, 4))
95
+ plt.plot(frequencies, color='b', label="Masked Frequencies")
96
+ plt.title("Generated Frequency Waveform for IP Masking")
97
+ plt.xlabel("Iterations")
98
+ plt.ylabel("Frequency Amplitude")
99
+ plt.grid(True)
100
+ plt.legend()
101
+ plt.show()
102
+
103
+ # Initialize the neural network
104
+ model = FrequencyMaskingNet()
105
+
106
+ # Example IP address to be masked (as a float for simplicity)
107
+ ip_address = 192.168 # Example, you can encode the IP better in practice
108
+
109
+ # Generate pseudo-random frequencies to mask the IP
110
+ masked_frequencies = generate_frequencies(ip_address, model)
111
+
112
+ # Visualize the generated frequencies as a waveform
113
+ plot_frequencies(masked_frequencies)
114
+
115
+ import torch
116
+ import torch.nn as nn
117
+ import matplotlib.pyplot as plt
118
+ import numpy as np
119
+
120
+ # Define the neural network for generating pseudo-random frequencies
121
+ class FrequencyMaskingNet(nn.Module):
122
+ def __init__(self, input_size=1, hidden_size=64, output_size=1):
123
+ super(FrequencyMaskingNet, self).__init__()
124
+
125
+ self.fc1 = nn.Linear(input_size, hidden_size)
126
+ self.fc2 = nn.Linear(hidden_size, hidden_size)
127
+ self.fc3 = nn.Linear(hidden_size, output_size)
128
+ self.relu = nn.ReLU()
129
+
130
+ def forward(self, x):
131
+ x = self.relu(self.fc1(x))
132
+ x = self.relu(self.fc2(x))
133
+ x = self.fc3(x)
134
+ return x
135
+
136
+ # Function to create random frequencies to mask IP data
137
+ def generate_frequencies(ip, model, iterations=100):
138
+ ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
139
+ frequencies = []
140
+
141
+ for _ in range(iterations):
142
+ frequency = model(ip_tensor)
143
+ frequencies.append(frequency.item())
144
+
145
+ return frequencies
146
+
147
+ # Function to generate a wealth signal that transmits in the direction of energy (e.g., linear increase)
148
+ def generate_wealth_signal(iterations=100):
149
+ # Simulate wealth signal as a sine wave with increasing amplitude (simulating directional energy)
150
+ time = np.linspace(0, 10, iterations)
151
+ wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
152
+ return wealth_signal
153
+
154
+ # Function to visualize frequencies as a waveform
155
+ def plot_frequencies(frequencies, wealth_signal):
156
+ plt.figure(figsize=(10, 4))
157
+ plt.plot(frequencies, color='b', label="Masked Frequencies")
158
+ plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
159
+ plt.title("Generated Frequency Waveform with Wealth Signal")
160
+ plt.xlabel("Iterations")
161
+ plt.ylabel("Amplitude")
162
+ plt.grid(True)
163
+ plt.legend()
164
+ plt.show()
165
+
166
+ # Initialize the neural network
167
+ model = FrequencyMaskingNet()
168
+
169
+ # Example IP address to be masked (as a float for simplicity)
170
+ ip_address = 192.168
171
+
172
+ # Generate pseudo-random frequencies to mask the IP
173
+ masked_frequencies = generate_frequencies(ip_address, model)
174
+
175
+ # Generate a wealth signal that grows in the direction of energy
176
+ wealth_signal = generate_wealth_signal(len(masked_frequencies))
177
+
178
+ # Visualize the generated frequencies and wealth signal
179
+ plot_frequencies(masked_frequencies, wealth_signal)
180
+
181
+ import torch
182
+ import torch.nn as nn
183
+ import matplotlib.pyplot as plt
184
+ import numpy as np
185
+
186
+ # Define the neural network for generating pseudo-random frequencies
187
+ class FrequencyMaskingNet(nn.Module):
188
+ def __init__(self, input_size=1, hidden_size=64, output_size=1):
189
+ super(FrequencyMaskingNet, self).__init__()
190
+
191
+ self.fc1 = nn.Linear(input_size, hidden_size)
192
+ self.fc2 = nn.Linear(hidden_size, hidden_size)
193
+ self.fc3 = nn.Linear(hidden_size, output_size)
194
+ self.relu = nn.ReLU()
195
+
196
+ def forward(self, x):
197
+ x = self.relu(self.fc1(x))
198
+ x = self.relu(self.fc2(x))
199
+ x = self.fc3(x)
200
+ return x
201
+
202
+ # Function to create random frequencies to mask IP data
203
+ def generate_frequencies(ip, model, iterations=100):
204
+ ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
205
+ frequencies = []
206
+
207
+ for _ in range(iterations):
208
+ frequency = model(ip_tensor)
209
+ frequencies.append(frequency.item())
210
+
211
+ return frequencies
212
+
213
+ # Function to generate a wealth signal that transmits in the direction of energy
214
+ def generate_wealth_signal(iterations=100):
215
+ time = np.linspace(0, 10, iterations)
216
+ wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
217
+ return wealth_signal
218
+
219
+ # Function to generate a dense encryption waveform
220
+ def generate_encryption_waveform(iterations=100):
221
+ time = np.linspace(0, 10, iterations)
222
+ # Dense waveform with higher frequency and random noise for encryption
223
+ encryption_signal = np.sin(10 * np.pi * time) + 0.2 * np.random.randn(iterations)
224
+ return encryption_signal
225
+
226
+ # Function to visualize frequencies, wealth signal, and encryption
227
+ def plot_frequencies(frequencies, wealth_signal, encryption_signal, target_reached_index):
228
+ plt.figure(figsize=(10, 4))
229
+
230
+ # Plot masked frequencies
231
+ plt.plot(frequencies, color='b', label="Masked Frequencies")
232
+
233
+ # Plot wealth signal
234
+ plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
235
+
236
+ # Add encryption signal at target point
237
+ plt.plot(range(target_reached_index, target_reached_index + len(encryption_signal)),
238
+ encryption_signal, color='r', linestyle='-', label="Encrypted Wealth Data", linewidth=2)
239
+
240
+ plt.title("SecureWealth Transmittor")
241
+ plt.xlabel("Iterations")
242
+ plt.ylabel("Amplitude")
243
+ plt.grid(True)
244
+ plt.legend()
245
+ plt.show()
246
+
247
+ # Initialize the neural network
248
+ model = FrequencyMaskingNet()
249
+
250
+ # Example IP address to be masked (as a float for simplicity)
251
+ ip_address = 192.168
252
+
253
+ # Generate pseudo-random frequencies to mask the IP
254
+ masked_frequencies = generate_frequencies(ip_address, model)
255
+
256
+ # Generate a wealth signal that grows in the direction of energy
257
+ wealth_signal = generate_wealth_signal(len(masked_frequencies))
258
+
259
+ # Determine where the wealth signal reaches its target (e.g., at its peak)
260
+ target_reached_index = np.argmax(wealth_signal)
261
+
262
+ # Generate dense encryption waveform once the wealth signal reaches its target
263
+ encryption_signal = generate_encryption_waveform(len(masked_frequencies) - target_reached_index)
264
+
265
+ # Visualize the generated frequencies, wealth signal, and encryption signal
266
+ plot_frequencies(masked_frequencies, wealth_signal, encryption_signal, target_reached_index)