import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt # Define grid size grid_size = 20 # Create a grid with random initial wealth data wealth_data = torch.rand((grid_size, grid_size)) # Define a simple neural network that will adjust the wealth data class WealthNet(nn.Module): def __init__(self): super(WealthNet, self).__init__() self.fc1 = nn.Linear(grid_size * grid_size, 128) self.fc2 = nn.Linear(128, grid_size * grid_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # Instantiate the network, loss function, and optimizer net = WealthNet() criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # Target direction to direct wealth (e.g., bottom right corner) target_wealth = torch.zeros((grid_size, grid_size)) target_wealth[-5:, -5:] = 1 # Direct wealth towards the bottom right corner # Convert the grid to a single vector for the neural network input_data = wealth_data.view(-1) target_data = target_wealth.view(-1) # Training the network epochs = 500 for epoch in range(epochs): optimizer.zero_grad() output = net(input_data) loss = criterion(output, target_data) loss.backward() optimizer.step() # Reshape the output to the grid size output_grid = output.detach().view(grid_size, grid_size) # Plot the original and adjusted wealth distribution fig, axes = plt.subplots(1, 2, figsize=(12, 6)) axes[0].imshow(wealth_data, cmap='viridis') axes[0].set_title('Original Wealth Distribution') axes[1].imshow(output_grid, cmap='viridis') axes[1].set_title('Directed Wealth Distribution') plt.show() import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt # Define grid size grid_size = 20 # Create a grid with random initial wealth data wealth_data = torch.rand((grid_size, grid_size)) # Define a neural network with an additional layer for infrared conversion class WealthNet(nn.Module): def __init__(self): super(WealthNet, self).__init__() self.fc1 = nn.Linear(grid_size * grid_size, 128) self.fc2 = nn.Linear(128, 128) self.fc3 = nn.Linear(128, grid_size * grid_size) self.infrared_layer = nn.Sigmoid() # Simulating the conversion to infrared energy def forward(self, x): x = torch.relu(self.fc1(x)) stored_wealth = torch.relu(self.fc2(x)) # Store wealth data here infrared_energy = self.infrared_layer(stored_wealth) # Convert to infrared energy x = self.fc3(infrared_energy) return x, stored_wealth, infrared_energy # Instantiate the network, loss function, and optimizer net = WealthNet() criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # Target direction to direct wealth (e.g., bottom right corner) target_wealth = torch.zeros((grid_size, grid_size)) target_wealth[-5:, -5:] = 1 # Direct wealth towards the bottom right corner # Convert the grid to a single vector for the neural network input_data = wealth_data.view(-1) target_data = target_wealth.view(-1) # Training the network epochs = 500 for epoch in range(epochs): optimizer.zero_grad() output, stored_wealth, infrared_energy = net(input_data) loss = criterion(output, target_data) loss.backward() optimizer.step() # Reshape the outputs to the grid size output_grid = output.detach().view(grid_size, grid_size) stored_wealth_grid = stored_wealth.detach().view(128) # Displayed as a 1D representation infrared_energy_grid = infrared_energy.detach().view(128) # Displayed as a 1D representation # Plot the original and adjusted wealth distribution fig, axes = plt.subplots(1, 4, figsize=(20, 6)) axes[0].imshow(wealth_data, cmap='viridis') axes[0].set_title('Original Wealth Distribution') axes[1].imshow(output_grid, cmap='viridis') axes[1].set_title('Directed Wealth Distribution') axes[2].plot(stored_wealth_grid.numpy()) axes[2].set_title('Stored Wealth Data (1D)') axes[3].plot(infrared_energy_grid.numpy()) axes[3].set_title('Infrared Energy (1D)') plt.show() import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt # Define grid size grid_size = 20 # Create a grid with random initial wealth data wealth_data = torch.rand((grid_size, grid_size)) # Define a neural network with an additional layer for data protection class WealthNet(nn.Module): def __init__(self): super(WealthNet, self).__init__() self.fc1 = nn.Linear(grid_size * grid_size, 128) self.fc2 = nn.Linear(128, 128) self.fc3 = nn.Linear(128, grid_size * grid_size) self.infrared_layer = nn.Sigmoid() # Simulating the conversion to infrared energy # Removed the incorrect instantiation of GaussianNoise here def forward(self, x): x = torch.relu(self.fc1(x)) stored_wealth = torch.relu(self.fc2(x)) # Store wealth data here protected_wealth = self.protection_layer(stored_wealth) # Protect the stored data infrared_energy = self.infrared_layer(protected_wealth) # Convert to infrared energy x = self.fc3(infrared_energy) return x, stored_wealth, protected_wealth, infrared_energy # Custom layer to add Gaussian noise (PyTorch does not have this built-in) class GaussianNoise(nn.Module): def __init__(self, stddev): super(GaussianNoise, self).__init__() self.stddev = stddev def forward(self, x): if self.training: noise = torch.randn_like(x) * self.stddev return x + noise return x # Instantiate the network, loss function, and optimizer net = WealthNet() # Add the GaussianNoise layer to the network instance net.protection_layer = GaussianNoise(0.1) criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # Target direction to direct wealth (e.g., bottom right corner) target_wealth = torch.zeros((grid_size, grid_size)) target_wealth[-5:, -5:] = 1 # Direct wealth towards the bottom right corner # Convert the grid to a single vector for the neural network input_data = wealth_data.view(-1) target_data = target_wealth.view(-1) # Training the network epochs = 500 for epoch in range(epochs): optimizer.zero_grad() output, stored_wealth, protected_wealth, infrared_energy = net(input_data) loss = criterion(output, target_data) loss.backward() optimizer.step() # Reshape the outputs to the grid size output_grid = output.detach().view(grid_size, grid_size) stored_wealth_grid = stored_wealth.detach().view(128) # Displayed as a 1D representation protected_wealth_grid = protected_wealth.detach().view(128) # Displayed as a 1D representation infrared_energy_grid = infrared_energy.detach().view(128) # Displayed as a 1D representation # Plot the original and adjusted wealth distribution fig, axes = plt.subplots(1, 5, figsize=(25, 6)) axes[0].imshow(wealth_data, cmap='viridis') axes[0].set_title('Original Wealth Distribution') axes[1].imshow(output_grid, cmap='viridis') axes[1].set_title('Directed Wealth Distribution') axes[2].plot(stored_wealth_grid.numpy()) axes[2].set_title('Stored Wealth Data (1D)') axes[3].plot(protected_wealth_grid.numpy()) axes[3].set_title('Protected Wealth Data (1D)') axes[4].plot(infrared_energy_grid)