antoinelouis
commited on
Commit
•
095fae1
1
Parent(s):
abda7af
Update README.md
Browse files
README.md
CHANGED
@@ -44,7 +44,7 @@ model-index:
|
|
44 |
|
45 |
# biencoder-mMiniLMv2-L6-mmarcoFR
|
46 |
|
47 |
-
This is a dense single-vector bi-encoder model
|
48 |
|
49 |
## Usage
|
50 |
|
@@ -121,24 +121,11 @@ similarity = q_embeddings @ p_embeddings.T
|
|
121 |
print(similarity)
|
122 |
```
|
123 |
|
124 |
-
***
|
125 |
-
|
126 |
## Evaluation
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|---:|:------------------------------------------------------------------------------------------------------------------------|:-------|--------:|------:|---------:|----------:|---------:|-------:|-----------:|--------:|
|
132 |
-
| 1 | [biencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-base-mmarcoFR) | 🇫🇷 | 110M | 443MB | 28.53 | 33.72 | 27.93 | 51.46 | 77.82 | 89.13 |
|
133 |
-
| 2 | [biencoder-mpnet-base-all-v2-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mpnet-base-all-v2-mmarcoFR) | 🇬🇧 | 109M | 438MB | 28.04 | 33.28 | 27.50 | 51.07 | 77.68 | 88.67 |
|
134 |
-
| 3 | [biencoder-distilcamembert-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-distilcamembert-mmarcoFR) | 🇫🇷 | 68M | 272MB | 26.80 | 31.87 | 26.23 | 49.20 | 76.44 | 87.87 |
|
135 |
-
| 4 | [biencoder-MiniLM-L6-all-v2-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-MiniLM-L6-all-v2-mmarcoFR) | 🇬🇧 | 23M | 91MB | 25.49 | 30.39 | 24.99 | 47.10 | 73.48 | 86.09 |
|
136 |
-
| 5 | [biencoder-mMiniLMv2-L12-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mMiniLMv2-L12-mmarcoFR) | 🇫🇷,99+ | 117M | 471MB | 24.74 | 29.41 | 24.23 | 45.40 | 71.52 | 84.42 |
|
137 |
-
| 6 | [biencoder-camemberta-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camemberta-base-mmarcoFR) | 🇫🇷 | 112M | 447MB | 24.78 | 29.24 | 24.23 | 44.58 | 69.59 | 82.18 |
|
138 |
-
| 7 | [biencoder-electra-base-french-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-electra-base-french-mmarcoFR) | 🇫🇷 | 110M | 440MB | 23.38 | 27.97 | 22.91 | 43.50 | 68.96 | 81.61 |
|
139 |
-
| 8 | **biencoder-mMiniLMv2-L6-mmarcoFR** | 🇫🇷,99+ | 107M | 428MB | 22.29 | 26.57 | 21.80 | 41.25 | 66.78 | 79.83 |
|
140 |
-
|
141 |
-
***
|
142 |
|
143 |
## Training
|
144 |
|
@@ -153,17 +140,15 @@ checkpoint and optimized via the cross-entropy loss (as in [DPR](https://doi.org
|
|
153 |
NVIDIA V100 GPU for 20 epochs (i.e., 65.7k steps) using the AdamW optimizer with a batch size of 152, a peak learning rate of 2e-5 with warm up along the first 500 steps
|
154 |
and linear scheduling. We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.
|
155 |
|
156 |
-
***
|
157 |
-
|
158 |
## Citation
|
159 |
|
160 |
```bibtex
|
161 |
-
@online{
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
}
|
169 |
```
|
|
|
44 |
|
45 |
# biencoder-mMiniLMv2-L6-mmarcoFR
|
46 |
|
47 |
+
This is a dense single-vector bi-encoder model for **French** that can be used for semantic search. The model maps queries and passages to 384-dimensional dense vectors which are used to compute relevance through cosine similarity.
|
48 |
|
49 |
## Usage
|
50 |
|
|
|
121 |
print(similarity)
|
122 |
```
|
123 |
|
|
|
|
|
124 |
## Evaluation
|
125 |
|
126 |
+
The model is evaluated on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of
|
127 |
+
8.8M candidate passages. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).
|
128 |
+
To see how it compares to other neural retrievers in French, check out the [*DécouvrIR*](https://huggingface.co/spaces/antoinelouis/decouvrir) leaderboard.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
## Training
|
131 |
|
|
|
140 |
NVIDIA V100 GPU for 20 epochs (i.e., 65.7k steps) using the AdamW optimizer with a batch size of 152, a peak learning rate of 2e-5 with warm up along the first 500 steps
|
141 |
and linear scheduling. We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.
|
142 |
|
|
|
|
|
143 |
## Citation
|
144 |
|
145 |
```bibtex
|
146 |
+
@online{louis2024decouvrir,
|
147 |
+
author = 'Antoine Louis',
|
148 |
+
title = 'DécouvrIR: A Benchmark for Evaluating the Robustness of Information Retrieval Models in French',
|
149 |
+
publisher = 'Hugging Face',
|
150 |
+
month = 'mar',
|
151 |
+
year = '2024',
|
152 |
+
url = 'https://huggingface.co/spaces/antoinelouis/decouvrir',
|
153 |
}
|
154 |
```
|