antoinelouis
commited on
Commit
•
a0b2916
1
Parent(s):
cade6bf
Update README.md
Browse files
README.md
CHANGED
@@ -33,7 +33,7 @@ Then you can use the model like this:
|
|
33 |
from sentence_transformers import CrossEncoder
|
34 |
pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
|
35 |
|
36 |
-
model = CrossEncoder('crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR')
|
37 |
scores = model.predict(pairs)
|
38 |
print(scores)
|
39 |
```
|
@@ -46,8 +46,8 @@ Without [sentence-transformers](https://www.SBERT.net), you can use the model as
|
|
46 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
47 |
import torch
|
48 |
|
49 |
-
model = AutoModelForSequenceClassification.from_pretrained('crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR')
|
50 |
-
tokenizer = AutoTokenizer.from_pretrained('crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR')
|
51 |
|
52 |
pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
|
53 |
features = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
|
@@ -69,7 +69,7 @@ Below, we compare the model performance with other cross-encoder models fine-tun
|
|
69 |
|---:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------:|-------------:|---------:|------------:|------------:|------------:|-------------:|
|
70 |
| 1 | [crossencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-camembert-base-mmarcoFR) | 443MB | 35.65 | 50.44 | 82.95 | 91.50 | 96.80 | 98.80 |
|
71 |
| 2 | **crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR** | 471MB | 34.37 | 51.01 | 82.23 | 90.60 | 96.45 | 98.40 |
|
72 |
-
| 3 | [crossencoder-
|
73 |
| 4 | [crossencoder-mpnet-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mpnet-base-mmarcoFR) | 438MB | 29.68 | 46.13 | 80.45 | 87.90 | 93.15 | 96.60 |
|
74 |
| 5 | [crossencoder-distilcamembert-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-distilcamembert-base-mmarcoFR) | 272MB | 27.28 | 43.71 | 80.30 | 89.10 | 95.55 | 98.60 |
|
75 |
| 6 | [crossencoder-electra-base-french-europeana-cased-discriminator-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-electra-base-french-europeana-cased-discriminator-mmarcoFR) | 443MB | 28.32 | 45.28 | 79.22 | 87.15 | 93.15 | 95.75 |
|
|
|
33 |
from sentence_transformers import CrossEncoder
|
34 |
pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
|
35 |
|
36 |
+
model = CrossEncoder('antoinelouis/crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR')
|
37 |
scores = model.predict(pairs)
|
38 |
print(scores)
|
39 |
```
|
|
|
46 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
47 |
import torch
|
48 |
|
49 |
+
model = AutoModelForSequenceClassification.from_pretrained('antoinelouis/crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR')
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained('antoinelouis/crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR')
|
51 |
|
52 |
pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
|
53 |
features = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
|
|
|
69 |
|---:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------:|-------------:|---------:|------------:|------------:|------------:|-------------:|
|
70 |
| 1 | [crossencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-camembert-base-mmarcoFR) | 443MB | 35.65 | 50.44 | 82.95 | 91.50 | 96.80 | 98.80 |
|
71 |
| 2 | **crossencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR** | 471MB | 34.37 | 51.01 | 82.23 | 90.60 | 96.45 | 98.40 |
|
72 |
+
| 3 | [crossencoder-mMiniLMv2-L12-H384-mmarco-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mMiniLMv2-L12-H384-mmarco-mmarcoFR) | 471MB | 34.22 | 49.20 | 81.70 | 90.90 | 97.10 | 98.90 |
|
73 |
| 4 | [crossencoder-mpnet-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-mpnet-base-mmarcoFR) | 438MB | 29.68 | 46.13 | 80.45 | 87.90 | 93.15 | 96.60 |
|
74 |
| 5 | [crossencoder-distilcamembert-base-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-distilcamembert-base-mmarcoFR) | 272MB | 27.28 | 43.71 | 80.30 | 89.10 | 95.55 | 98.60 |
|
75 |
| 6 | [crossencoder-electra-base-french-europeana-cased-discriminator-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-electra-base-french-europeana-cased-discriminator-mmarcoFR) | 443MB | 28.32 | 45.28 | 79.22 | 87.15 | 93.15 | 95.75 |
|