update model card README.md
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the xtreme_s dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 1.3514
|
22 |
- Accuracy: 0.7236
|
|
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -39,14 +39,13 @@ More information needed
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
- learning_rate: 0.0003
|
42 |
-
- train_batch_size:
|
43 |
-
- eval_batch_size:
|
44 |
- seed: 42
|
45 |
- distributed_type: multi-GPU
|
46 |
- num_devices: 8
|
47 |
-
- gradient_accumulation_steps: 2
|
48 |
- total_train_batch_size: 64
|
49 |
-
- total_eval_batch_size:
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
- lr_scheduler_warmup_steps: 2000
|
@@ -55,32 +54,32 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
59 |
-
|
60 |
-
| 0.5296 | 0.26 | 1000 | 2.6633 |
|
61 |
-
| 0.4252 | 0.52 | 2000 | 1.8582 |
|
62 |
-
| 0.2989 | 0.78 | 3000 | 1.6780 |
|
63 |
-
| 0.3563 | 1.04 | 4000 | 1.4479 |
|
64 |
-
| 0.1617 | 1.3 | 5000 | 1.5066 |
|
65 |
-
| 0.1409 | 1.56 | 6000 | 1.4082 |
|
66 |
-
| 0.01 | 1.82 | 7000 | 1.2448 |
|
67 |
-
| 0.0018 | 2.08 | 8000 | 1.1996 |
|
68 |
-
| 0.0014 | 2.34 | 9000 | 1.6505 |
|
69 |
-
| 0.0188 | 2.6 | 10000 | 1.4050 |
|
70 |
-
| 0.0007 | 2.86 | 11000 | 1.5831 |
|
71 |
-
| 0.1038 | 3.12 | 12000 | 1.5441 |
|
72 |
-
| 0.0003 | 3.38 | 13000 | 1.3483 |
|
73 |
-
| 0.0004 | 3.64 | 14000 | 1.7070 |
|
74 |
-
| 0.0003 | 3.9 | 15000 | 1.3198 |
|
75 |
-
| 0.0002 | 4.16 | 16000 | 1.3118 |
|
76 |
-
| 0.0001 | 4.42 | 17000 | 1.4099 |
|
77 |
-
| 0.0 | 4.68 | 18000 | 1.3658 |
|
78 |
-
| 0.0001 | 4.93 | 19000 | 1.3514 |
|
79 |
|
80 |
|
81 |
### Framework versions
|
82 |
|
83 |
- Transformers 4.18.0.dev0
|
84 |
-
- Pytorch 1.
|
85 |
- Datasets 1.18.4.dev0
|
86 |
- Tokenizers 0.11.6
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the xtreme_s dataset.
|
20 |
It achieves the following results on the evaluation set:
|
|
|
21 |
- Accuracy: 0.7236
|
22 |
+
- Loss: 1.3514
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
- learning_rate: 0.0003
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 4
|
44 |
- seed: 42
|
45 |
- distributed_type: multi-GPU
|
46 |
- num_devices: 8
|
|
|
47 |
- total_train_batch_size: 64
|
48 |
+
- total_eval_batch_size: 32
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 2000
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
58 |
+
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
|
59 |
+
| 0.5296 | 0.26 | 1000 | 0.4016 | 2.6633 |
|
60 |
+
| 0.4252 | 0.52 | 2000 | 0.5751 | 1.8582 |
|
61 |
+
| 0.2989 | 0.78 | 3000 | 0.6332 | 1.6780 |
|
62 |
+
| 0.3563 | 1.04 | 4000 | 0.6799 | 1.4479 |
|
63 |
+
| 0.1617 | 1.3 | 5000 | 0.6679 | 1.5066 |
|
64 |
+
| 0.1409 | 1.56 | 6000 | 0.6992 | 1.4082 |
|
65 |
+
| 0.01 | 1.82 | 7000 | 0.7071 | 1.2448 |
|
66 |
+
| 0.0018 | 2.08 | 8000 | 0.7148 | 1.1996 |
|
67 |
+
| 0.0014 | 2.34 | 9000 | 0.6410 | 1.6505 |
|
68 |
+
| 0.0188 | 2.6 | 10000 | 0.6840 | 1.4050 |
|
69 |
+
| 0.0007 | 2.86 | 11000 | 0.6621 | 1.5831 |
|
70 |
+
| 0.1038 | 3.12 | 12000 | 0.6829 | 1.5441 |
|
71 |
+
| 0.0003 | 3.38 | 13000 | 0.6900 | 1.3483 |
|
72 |
+
| 0.0004 | 3.64 | 14000 | 0.6414 | 1.7070 |
|
73 |
+
| 0.0003 | 3.9 | 15000 | 0.7075 | 1.3198 |
|
74 |
+
| 0.0002 | 4.16 | 16000 | 0.7105 | 1.3118 |
|
75 |
+
| 0.0001 | 4.42 | 17000 | 0.7029 | 1.4099 |
|
76 |
+
| 0.0 | 4.68 | 18000 | 0.7180 | 1.3658 |
|
77 |
+
| 0.0001 | 4.93 | 19000 | 0.7236 | 1.3514 |
|
78 |
|
79 |
|
80 |
### Framework versions
|
81 |
|
82 |
- Transformers 4.18.0.dev0
|
83 |
+
- Pytorch 1.10.1+cu111
|
84 |
- Datasets 1.18.4.dev0
|
85 |
- Tokenizers 0.11.6
|