antypasd commited on
Commit
6b727ec
1 Parent(s): 8a58fd6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -21
README.md CHANGED
@@ -6,41 +6,63 @@ model-index:
6
  results: []
7
  ---
8
 
9
- <!-- This model card has been generated automatically according to the information Keras had access to. You should
10
- probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
11
 
12
- # twitter-roberta-base-sentiment-earthquake
13
 
14
- This model was trained from scratch on an unknown dataset.
15
- It achieves the following results on the evaluation set:
16
 
 
17
 
18
- ## Model description
 
 
 
 
19
 
20
- More information needed
21
 
22
- ## Intended uses & limitations
23
 
24
- More information needed
25
 
26
- ## Training and evaluation data
 
 
27
 
28
- More information needed
 
 
 
 
29
 
30
- ## Training procedure
31
 
32
- ### Training hyperparameters
 
 
33
 
34
- The following hyperparameters were used during training:
35
- - optimizer: None
36
- - training_precision: float32
 
37
 
38
- ### Training results
 
39
 
 
40
 
 
41
 
42
- ### Framework versions
 
 
43
 
44
- - Transformers 4.25.1
45
- - TensorFlow 2.11.0
46
- - Tokenizers 0.13.2
 
6
  results: []
7
  ---
8
 
9
+ ---
10
+ tags:
11
+ - generated_from_keras_callback
12
+ model-index:
13
+ - name: XLM-T-Sent-Politics
14
+ results: []
15
+ ---
16
+
17
+ # XLM-T-Sent-Politics
18
+
19
+ This is an "extension" of the `twitter-roberta-base-sentiment-latest` model ([model](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest), further finetuned with original Twitter data posted in English about the 10th anniversary of the 2010 Haiti Earthquake.
20
 
21
+ - Reference Paper: [Sentiment analysis (SA) (supervised and unsupervised classification) of original Twitter data posted in English about the 10th anniversary of the 2010 Haiti Earthquake](https://data.ncl.ac.uk/articles/dataset/Sentiment_analysis_SA_supervised_and_unsupervised_classification_of_original_Twitter_data_posted_in_English_about_the_10th_anniversary_of_the_2010_Haiti_Earthquake/19688040/1).
22
 
 
 
23
 
24
+ ## Full classification example
25
 
26
+ ```python
27
+ from transformers import AutoModelForSequenceClassification
28
+ from transformers import TFAutoModelForSequenceClassification
29
+ from transformers import AutoTokenizer
30
+ import numpy as np
31
 
32
+ class_mapping = {0: "Negative", 1: "Neutral", 2: "Positive"}
33
 
34
+ MODEL = "antypasd/twitter-roberta-base-sentiment-earthquake"
35
 
36
+ tokenizer = AutoTokenizer.from_pretrained(MODEL)
37
 
38
+ # PT
39
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL)
40
+ model.save_pretrained(MODEL)
41
 
42
+ text = "$202 million of $1.14 billion in United States (US) ​recovery aid went to a new 'industrial park' in Caracol, an area unaffected by the Haiti earthquake. The plan was to invite foreign garment companies to take advantage of extremely low-wage labor"
43
+ encoded_input = tokenizer(text, return_tensors='pt')
44
+ output = model(**encoded_input)
45
+ scores = output[0][0].detach().numpy()
46
+ prediction = np.argmax(scores)
47
 
 
48
 
49
+ # # TF
50
+ # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
51
+ # model.save_pretrained(MODEL)
52
 
53
+ # encoded_input = tokenizer(text, return_tensors='tf')
54
+ # output = model(encoded_input)
55
+ # scores = output[0][0].numpy()
56
+ # prediction = np.argmax(scores)
57
 
58
+ # Print label
59
+ print(text, class_mapping[prediction])
60
 
61
+ ```
62
 
63
+ Output:
64
 
65
+ ```
66
+ Negative
67
+ ```
68