--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8480392156862745 - name: F1 type: f1 value: 0.8945578231292517 --- # distilbert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6236 - Accuracy: 0.8480 - F1: 0.8946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.4371 | 0.8137 | 0.8746 | | No log | 2.0 | 460 | 0.4117 | 0.8431 | 0.8940 | | 0.4509 | 3.0 | 690 | 0.3943 | 0.8431 | 0.8908 | | 0.4509 | 4.0 | 920 | 0.5686 | 0.8382 | 0.8893 | | 0.1915 | 5.0 | 1150 | 0.6236 | 0.8480 | 0.8946 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.8.1+cu102 - Datasets 1.18.4 - Tokenizers 0.12.1