anuragshas commited on
Commit
dd00c7b
1 Parent(s): e36e6a7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ia
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: Anurag Singh XLSR Wav2Vec2 Large 53 Interlingua
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice ia
21
+ type: common_voice
22
+ args: ia
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 22.08
27
+ ---
28
+ # Wav2Vec2-Large-XLSR-53-Interlingua
29
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Interlingua using the [Common Voice](https://huggingface.co/datasets/common_voice).
30
+ When using this model, make sure that your speech input is sampled at 16kHz.
31
+ ## Usage
32
+ The model can be used directly (without a language model) as follows:
33
+ ```python
34
+ import torch
35
+ import torchaudio
36
+ from datasets import load_dataset
37
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
38
+ test_dataset = load_dataset("common_voice", "ia", split="test[:2%]")
39
+ processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia")
40
+ model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia")
41
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
42
+ # Preprocessing the datasets.
43
+ # We need to read the aduio files as arrays
44
+ def speech_file_to_array_fn(batch):
45
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
46
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
47
+ return batch
48
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
49
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
50
+ with torch.no_grad():
51
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
52
+ predicted_ids = torch.argmax(logits, dim=-1)
53
+ print("Prediction:", processor.batch_decode(predicted_ids))
54
+ print("Reference:", test_dataset["sentence"][:2])
55
+ ```
56
+ ## Evaluation
57
+ The model can be evaluated as follows on the Interlingua test data of Common Voice.
58
+ ```python
59
+ import torch
60
+ import torchaudio
61
+ from datasets import load_dataset, load_metric
62
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
63
+ import re
64
+ test_dataset = load_dataset("common_voice", "ia", split="test")
65
+ wer = load_metric("wer")
66
+ processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia")
67
+ model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia")
68
+ model.to("cuda")
69
+ chars_to_ignore_regex = '[\.\,\!\?\-\"\:\;\'\“\”]'
70
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
71
+ # Preprocessing the datasets.
72
+ # We need to read the aduio files as arrays
73
+ def speech_file_to_array_fn(batch):
74
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
75
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
76
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
77
+ return batch
78
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
79
+ # Preprocessing the datasets.
80
+ # We need to read the aduio files as arrays
81
+ def evaluate(batch):
82
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
83
+ with torch.no_grad():
84
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
85
+ pred_ids = torch.argmax(logits, dim=-1)
86
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
87
+ return batch
88
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
89
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
90
+ ```
91
+ **Test Result**: 22.08 %
92
+ ## Training
93
+ The Common Voice `train` and `validation` datasets were used for training.