File size: 2,188 Bytes
f542122 e63f5d2 f542122 e63f5d2 f542122 685634b f542122 e63f5d2 f542122 e63f5d2 f542122 9d30f5b e63f5d2 f542122 e63f5d2 f542122 e63f5d2 f542122 e63f5d2 f542122 e63f5d2 f542122 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- lv
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large-v2 Latvian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: lv
split: test
args: lv
metrics:
- name: Wer
type: wer
value: 17.77988614800759
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large-v2 Latvian
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 lv dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2634
- Wer: 17.7799
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2124 | 3.02 | 200 | 0.2485 | 18.4061 |
| 0.0704 | 6.05 | 400 | 0.2634 | 17.7799 |
| 0.0379 | 10.01 | 600 | 0.3103 | 17.8178 |
| 0.0228 | 13.03 | 800 | 0.3555 | 18.4061 |
| 0.0139 | 16.06 | 1000 | 0.3733 | 18.4535 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|