--- library_name: transformers base_model: raulgdp/xml-roberta-large-finetuned-ner tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: la-xml-roberta-large-ner-finetuned-biomedical-t4 results: [] --- # xml-roberta-large-ner-finetuned-biomedical This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1139 - Precision: 0.9234 - Recall: 0.9548 - F1: 0.9388 - Accuracy: 0.9786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1235 | 1.0 | 2447 | 0.0949 | 0.9076 | 0.9524 | 0.9294 | 0.9738 | | 0.0859 | 2.0 | 4894 | 0.1034 | 0.9222 | 0.9597 | 0.9406 | 0.9778 | | 0.063 | 3.0 | 7341 | 0.1005 | 0.9330 | 0.9600 | 0.9463 | 0.9807 | | 0.059 | 4.0 | 9788 | 0.1065 | 0.9350 | 0.9577 | 0.9463 | 0.9806 | | 0.0513 | 5.0 | 12235 | 0.1139 | 0.9234 | 0.9548 | 0.9388 | 0.9786 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3