--- library_name: transformers base_model: FacebookAI/xlm-roberta-large-finetuned-conll03-english tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-clinical-ner-breast-cancer-sp results: [] --- # xlm-roberta-large-clinical-ner-breast-cancer-sp This model is a fine-tuned version of [FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2999 - Precision: 0.8965 - Recall: 0.8959 - F1: 0.8962 - Accuracy: 0.9474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.2687 | 1.0 | 213 | 1.3859 | 0.4556 | 0.3389 | 0.3887 | 0.6763 | | 0.4857 | 2.0 | 426 | 0.5022 | 0.7673 | 0.7919 | 0.7794 | 0.8970 | | 0.2519 | 3.0 | 639 | 0.3412 | 0.8407 | 0.8452 | 0.8430 | 0.9259 | | 0.1671 | 4.0 | 852 | 0.3058 | 0.8711 | 0.8659 | 0.8685 | 0.9355 | | 0.1423 | 5.0 | 1065 | 0.2983 | 0.8585 | 0.8659 | 0.8622 | 0.9340 | | 0.0973 | 6.0 | 1278 | 0.2795 | 0.8773 | 0.8732 | 0.8753 | 0.9397 | | 0.0655 | 7.0 | 1491 | 0.2775 | 0.8755 | 0.8726 | 0.8740 | 0.9393 | | 0.0734 | 8.0 | 1704 | 0.2755 | 0.8799 | 0.8846 | 0.8822 | 0.9422 | | 0.0575 | 9.0 | 1917 | 0.2900 | 0.8828 | 0.8793 | 0.8810 | 0.9409 | | 0.0522 | 10.0 | 2130 | 0.2852 | 0.8864 | 0.8846 | 0.8855 | 0.9417 | | 0.0559 | 11.0 | 2343 | 0.2735 | 0.8863 | 0.8893 | 0.8878 | 0.9441 | | 0.0401 | 12.0 | 2556 | 0.2845 | 0.8833 | 0.8939 | 0.8886 | 0.9434 | | 0.0326 | 13.0 | 2769 | 0.2845 | 0.8951 | 0.8933 | 0.8942 | 0.9462 | | 0.0513 | 14.0 | 2982 | 0.2864 | 0.8886 | 0.8886 | 0.8886 | 0.9453 | | 0.0223 | 15.0 | 3195 | 0.2920 | 0.8923 | 0.8899 | 0.8911 | 0.9455 | | 0.0332 | 16.0 | 3408 | 0.2956 | 0.8906 | 0.8906 | 0.8906 | 0.9470 | | 0.0262 | 17.0 | 3621 | 0.2987 | 0.8953 | 0.8959 | 0.8956 | 0.9469 | | 0.018 | 18.0 | 3834 | 0.2999 | 0.8965 | 0.8959 | 0.8962 | 0.9474 | | 0.02 | 19.0 | 4047 | 0.3023 | 0.8965 | 0.8959 | 0.8962 | 0.9472 | | 0.0222 | 19.9088 | 4240 | 0.3023 | 0.8965 | 0.8959 | 0.8962 | 0.9474 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0