--- license: bsd-3-clause tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: [] --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7408 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5687 | 1.0 | 450 | 1.3520 | 0.58 | | 0.0014 | 2.0 | 900 | 0.9949 | 0.7 | | 0.2778 | 3.0 | 1350 | 0.7536 | 0.84 | | 0.0042 | 4.0 | 1800 | 0.9976 | 0.86 | | 0.0001 | 5.0 | 2250 | 0.7859 | 0.85 | | 0.0002 | 6.0 | 2700 | 0.9659 | 0.86 | | 0.0 | 7.0 | 3150 | 0.8016 | 0.88 | | 0.0 | 8.0 | 3600 | 0.5691 | 0.88 | | 0.0 | 9.0 | 4050 | 0.7230 | 0.88 | | 0.0 | 10.0 | 4500 | 0.7408 | 0.88 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3