File size: 24,352 Bytes
f25e361 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
[2023-01-11 19:27:33,824][2153185] Saving configuration to ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/config.json... [2023-01-11 19:27:34,003][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-01-11 19:27:34,005][2153185] Rollout worker 0 uses device cuda:0 [2023-01-11 19:27:34,006][2153185] In synchronous mode, we only accumulate one batch. Setting num_batches_to_accumulate to 1 [2023-01-11 19:27:34,067][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-01-11 19:27:34,068][2153185] InferenceWorker_p0-w0: min num requests: 1 [2023-01-11 19:27:34,069][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-01-11 19:27:34,070][2153185] WARNING! It is generally recommended to enable Fixed KL loss (https://arxiv.org/pdf/1707.06347.pdf) for continuous action tasks to avoid potential numerical issues. I.e. set --kl_loss_coeff=0.1 [2023-01-11 19:27:34,070][2153185] Setting fixed seed 2322090 [2023-01-11 19:27:34,071][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-01-11 19:27:34,071][2153185] Initializing actor-critic model on device cuda:0 [2023-01-11 19:27:34,072][2153185] RunningMeanStd input shape: (17,) [2023-01-11 19:27:34,072][2153185] RunningMeanStd input shape: (1,) [2023-01-11 19:27:34,154][2153185] Created Actor Critic model with architecture: [2023-01-11 19:27:34,154][2153185] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): MultiInputEncoder( (encoders): ModuleDict( (obs): MlpEncoder( (mlp_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Linear) (3): RecursiveScriptModule(original_name=ELU) (4): RecursiveScriptModule(original_name=Linear) (5): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreIdentity() (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=64, out_features=1, bias=True) (action_parameterization): ActionParameterizationContinuousNonAdaptiveStddev( (distribution_linear): Linear(in_features=64, out_features=6, bias=True) ) ) [2023-01-11 19:27:34,156][2153185] Using optimizer <class 'torch.optim.adam.Adam'> [2023-01-11 19:27:34,159][2153185] No checkpoints found [2023-01-11 19:27:34,160][2153185] Did not load from checkpoint, starting from scratch! [2023-01-11 19:27:34,161][2153185] Initialized policy 0 weights for model version 0 [2023-01-11 19:27:34,161][2153185] LearnerWorker_p0 finished initialization! [2023-01-11 19:27:34,162][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-01-11 19:27:34,167][2153185] Inference worker 0-0 is ready! [2023-01-11 19:27:34,167][2153185] All inference workers are ready! Signal rollout workers to start! [2023-01-11 19:27:34,168][2153185] EnvRunner 0-0 uses policy 0 [2023-01-11 19:27:35,507][2153185] Resetting env <VectorGymWrapper instance> with 2048 parallel agents... [2023-01-11 19:27:38,375][2153185] reset() done, obs.shape=torch.Size([2048, 17])! [2023-01-11 19:27:47,676][2153185] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 2048. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-01-11 19:27:56,420][2153185] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 2048. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-01-11 19:27:56,424][2153185] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 234.1. Samples: 4096. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-01-11 19:27:56,429][2153185] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 468.0. Samples: 6144. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-01-11 19:27:56,432][2153185] Heartbeat connected on Batcher_0 [2023-01-11 19:27:56,432][2153185] Heartbeat connected on LearnerWorker_p0 [2023-01-11 19:27:56,432][2153185] Heartbeat connected on InferenceWorker_p0-w0 [2023-01-11 19:27:56,432][2153185] Heartbeat connected on RolloutWorker_w0 [2023-01-11 19:27:58,473][2153185] Fps is (10 sec: 127937.9, 60 sec: 24280.7, 300 sec: 24280.7). Total num frames: 262144. Throughput: 0: 15365.1. Samples: 167936. Policy #0 lag: (min: 2.0, avg: 2.0, max: 2.0) [2023-01-11 19:27:58,474][2153185] Avg episode reward: [(0, '23.990')] [2023-01-11 19:28:03,423][2153185] Fps is (10 sec: 318590.1, 60 sec: 141502.0, 300 sec: 141502.0). Total num frames: 2228224. Throughput: 0: 87268.2. Samples: 1376256. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:28:03,424][2153185] Avg episode reward: [(0, '618.064')] [2023-01-11 19:28:08,424][2153185] Fps is (10 sec: 381986.4, 60 sec: 195844.4, 300 sec: 195844.4). Total num frames: 4063232. Throughput: 0: 174917.4. Samples: 3631104. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:28:08,425][2153185] Avg episode reward: [(0, '630.121')] [2023-01-11 19:28:13,422][2153185] Fps is (10 sec: 367046.5, 60 sec: 229095.9, 300 sec: 229095.9). Total num frames: 5898240. Throughput: 0: 227027.7. Samples: 5847040. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:28:13,423][2153185] Avg episode reward: [(0, '783.157')] [2023-01-11 19:28:13,483][2153185] Saving new best policy, reward=783.157! [2023-01-11 19:28:18,424][2153185] Fps is (10 sec: 373558.6, 60 sec: 253642.4, 300 sec: 253642.4). Total num frames: 7798784. Throughput: 0: 227065.9. Samples: 6983680. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0) [2023-01-11 19:28:18,424][2153185] Avg episode reward: [(0, '2312.752')] [2023-01-11 19:28:18,432][2153185] Saving new best policy, reward=2312.752! [2023-01-11 19:28:23,431][2153185] Fps is (10 sec: 379766.5, 60 sec: 271273.9, 300 sec: 271273.9). Total num frames: 9699328. Throughput: 0: 258386.1. Samples: 9240576. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0) [2023-01-11 19:28:23,432][2153185] Avg episode reward: [(0, '2002.332')] [2023-01-11 19:28:28,423][2153185] Fps is (10 sec: 373562.0, 60 sec: 283072.2, 300 sec: 283072.2). Total num frames: 11534336. Throughput: 0: 358297.9. Samples: 11468800. Policy #0 lag: (min: 5.0, avg: 5.0, max: 5.0) [2023-01-11 19:28:28,424][2153185] Avg episode reward: [(0, '2368.916')] [2023-01-11 19:28:28,429][2153185] Saving new best policy, reward=2368.916! [2023-01-11 19:28:33,443][2153185] Fps is (10 sec: 373110.6, 60 sec: 293551.7, 300 sec: 293551.7). Total num frames: 13434880. Throughput: 0: 339901.9. Samples: 12587008. Policy #0 lag: (min: 5.0, avg: 5.0, max: 5.0) [2023-01-11 19:28:33,444][2153185] Avg episode reward: [(0, '2996.578')] [2023-01-11 19:28:33,446][2153185] Saving new best policy, reward=2996.578! [2023-01-11 19:28:38,422][2153185] Fps is (10 sec: 373599.0, 60 sec: 300909.4, 300 sec: 300909.4). Total num frames: 15269888. Throughput: 0: 352559.6. Samples: 14811136. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0) [2023-01-11 19:28:38,423][2153185] Avg episode reward: [(0, '3076.930')] [2023-01-11 19:28:38,431][2153185] Saving new best policy, reward=3076.930! [2023-01-11 19:28:43,424][2153185] Fps is (10 sec: 367721.8, 60 sec: 363906.9, 300 sec: 306830.4). Total num frames: 17104896. Throughput: 0: 375696.5. Samples: 17055744. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0) [2023-01-11 19:28:43,424][2153185] Avg episode reward: [(0, '3859.353')] [2023-01-11 19:28:43,428][2153185] Saving new best policy, reward=3859.353! [2023-01-11 19:28:48,422][2153185] Fps is (10 sec: 373566.4, 60 sec: 365502.6, 300 sec: 312869.9). Total num frames: 19005440. Throughput: 0: 372839.0. Samples: 18153472. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:28:48,423][2153185] Avg episode reward: [(0, '3764.592')] [2023-01-11 19:28:53,424][2153185] Fps is (10 sec: 373543.7, 60 sec: 365657.5, 300 sec: 316977.7). Total num frames: 20840448. Throughput: 0: 373417.6. Samples: 20434944. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:28:53,425][2153185] Avg episode reward: [(0, '4154.622')] [2023-01-11 19:28:53,429][2153185] Saving new best policy, reward=4154.622! [2023-01-11 19:28:58,456][2153185] Fps is (10 sec: 372296.1, 60 sec: 374754.2, 300 sec: 321294.3). Total num frames: 22740992. Throughput: 0: 373094.6. Samples: 22648832. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:28:58,457][2153185] Avg episode reward: [(0, '4481.427')] [2023-01-11 19:28:58,463][2153185] Saving new best policy, reward=4481.427! [2023-01-11 19:29:03,470][2153185] Fps is (10 sec: 384889.5, 60 sec: 374357.4, 300 sec: 325979.1). Total num frames: 24707072. Throughput: 0: 373080.5. Samples: 23789568. Policy #0 lag: (min: 4.0, avg: 4.0, max: 4.0) [2023-01-11 19:29:03,471][2153185] Avg episode reward: [(0, '4315.631')] [2023-01-11 19:29:08,424][2153185] Fps is (10 sec: 381321.0, 60 sec: 374645.7, 300 sec: 328704.5). Total num frames: 26542080. Throughput: 0: 375071.6. Samples: 26116096. Policy #0 lag: (min: 4.0, avg: 4.0, max: 4.0) [2023-01-11 19:29:08,425][2153185] Avg episode reward: [(0, '5075.545')] [2023-01-11 19:29:08,433][2153185] Saving new best policy, reward=5075.545! [2023-01-11 19:29:12,089][2153185] Early stopping after 3 epochs (6 sgd steps), loss delta 0.0000006 [2023-01-11 19:29:13,468][2153185] Fps is (10 sec: 380166.0, 60 sec: 376542.0, 300 sec: 332294.2). Total num frames: 28508160. Throughput: 0: 375819.4. Samples: 28397568. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0) [2023-01-11 19:29:13,469][2153185] Avg episode reward: [(0, '4851.746')] [2023-01-11 19:29:17,083][2153185] Early stopping after 5 epochs (10 sgd steps), loss delta 0.0000005 [2023-01-11 19:29:18,424][2153185] Fps is (10 sec: 380103.1, 60 sec: 375736.5, 300 sec: 334368.5). Total num frames: 30343168. Throughput: 0: 377264.1. Samples: 29556736. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0) [2023-01-11 19:29:18,425][2153185] Avg episode reward: [(0, '3804.353')] [2023-01-11 19:29:23,430][2153185] Fps is (10 sec: 374981.1, 60 sec: 375744.9, 300 sec: 336735.2). Total num frames: 32243712. Throughput: 0: 377128.2. Samples: 31784960. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:29:23,431][2153185] Avg episode reward: [(0, '4149.015')] [2023-01-11 19:29:28,424][2153185] Fps is (10 sec: 373559.1, 60 sec: 375736.0, 300 sec: 338258.5). Total num frames: 34078720. Throughput: 0: 376827.7. Samples: 34013184. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:29:28,425][2153185] Avg episode reward: [(0, '4615.276')] [2023-01-11 19:29:28,433][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000005196_34078720.pth... [2023-01-11 19:29:33,423][2153185] Fps is (10 sec: 373832.6, 60 sec: 375866.1, 300 sec: 340240.8). Total num frames: 35979264. Throughput: 0: 377460.9. Samples: 35139584. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:29:33,424][2153185] Avg episode reward: [(0, '5411.330')] [2023-01-11 19:29:33,427][2153185] Saving new best policy, reward=5411.330! [2023-01-11 19:29:38,480][2153185] Fps is (10 sec: 378011.1, 60 sec: 376472.7, 300 sec: 341866.0). Total num frames: 37879808. Throughput: 0: 376411.6. Samples: 37394432. Policy #0 lag: (min: 6.0, avg: 6.0, max: 6.0) [2023-01-11 19:29:38,480][2153185] Avg episode reward: [(0, '5203.336')] [2023-01-11 19:29:43,422][2153185] Fps is (10 sec: 373588.1, 60 sec: 376841.2, 300 sec: 343121.6). Total num frames: 39714816. Throughput: 0: 378071.0. Samples: 39649280. Policy #0 lag: (min: 6.0, avg: 6.0, max: 6.0) [2023-01-11 19:29:43,423][2153185] Avg episode reward: [(0, '5195.713')] [2023-01-11 19:29:48,444][2153185] Fps is (10 sec: 374897.6, 60 sec: 376695.4, 300 sec: 344591.4). Total num frames: 41615360. Throughput: 0: 377415.6. Samples: 40763392. Policy #0 lag: (min: 3.0, avg: 3.0, max: 3.0) [2023-01-11 19:29:48,444][2153185] Avg episode reward: [(0, '4986.651')] [2023-01-11 19:29:53,424][2153185] Fps is (10 sec: 373487.3, 60 sec: 376831.7, 300 sec: 345536.9). Total num frames: 43450368. Throughput: 0: 375558.6. Samples: 43016192. Policy #0 lag: (min: 3.0, avg: 3.0, max: 3.0) [2023-01-11 19:29:53,425][2153185] Avg episode reward: [(0, '5789.914')] [2023-01-11 19:29:53,428][2153185] Saving new best policy, reward=5789.914! [2023-01-11 19:29:58,424][2153185] Fps is (10 sec: 374311.5, 60 sec: 377034.7, 300 sec: 346859.9). Total num frames: 45350912. Throughput: 0: 375659.2. Samples: 45285376. Policy #0 lag: (min: 3.0, avg: 3.0, max: 3.0) [2023-01-11 19:29:58,424][2153185] Avg episode reward: [(0, '5175.173')] [2023-01-11 19:30:03,424][2153185] Fps is (10 sec: 373562.6, 60 sec: 374936.3, 300 sec: 347601.4). Total num frames: 47185920. Throughput: 0: 374287.2. Samples: 46399488. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:03,424][2153185] Avg episode reward: [(0, '5716.311')] [2023-01-11 19:30:08,481][2153185] Fps is (10 sec: 377936.6, 60 sec: 376474.3, 300 sec: 349079.7). Total num frames: 49152000. Throughput: 0: 374544.6. Samples: 48658432. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:08,482][2153185] Avg episode reward: [(0, '5753.585')] [2023-01-11 19:30:13,423][2153185] Fps is (10 sec: 380151.6, 60 sec: 374933.9, 300 sec: 349834.5). Total num frames: 50987008. Throughput: 0: 375843.1. Samples: 50925568. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:13,423][2153185] Avg episode reward: [(0, '5924.315')] [2023-01-11 19:30:13,427][2153185] Saving new best policy, reward=5924.315! [2023-01-11 19:30:18,422][2153185] Fps is (10 sec: 375757.5, 60 sec: 375750.7, 300 sec: 350839.0). Total num frames: 52887552. Throughput: 0: 375698.9. Samples: 52045824. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:18,423][2153185] Avg episode reward: [(0, '6123.117')] [2023-01-11 19:30:18,430][2153185] Saving new best policy, reward=6123.117! [2023-01-11 19:30:23,424][2153185] Fps is (10 sec: 373514.6, 60 sec: 374689.5, 300 sec: 351355.1). Total num frames: 54722560. Throughput: 0: 375341.2. Samples: 54263808. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:23,424][2153185] Avg episode reward: [(0, '5322.819')] [2023-01-11 19:30:28,423][2153185] Fps is (10 sec: 373533.7, 60 sec: 375746.5, 300 sec: 352250.9). Total num frames: 56623104. Throughput: 0: 375732.2. Samples: 56557568. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:28,423][2153185] Avg episode reward: [(0, '5822.090')] [2023-01-11 19:30:33,424][2153185] Fps is (10 sec: 380091.8, 60 sec: 375732.6, 300 sec: 353088.9). Total num frames: 58523648. Throughput: 0: 375903.8. Samples: 57671680. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:33,425][2153185] Avg episode reward: [(0, '5254.855')] [2023-01-11 19:30:38,462][2153185] Fps is (10 sec: 378651.3, 60 sec: 375853.0, 300 sec: 353802.7). Total num frames: 60424192. Throughput: 0: 376290.2. Samples: 59963392. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:38,462][2153185] Avg episode reward: [(0, '5823.812')] [2023-01-11 19:30:43,424][2153185] Fps is (10 sec: 373560.6, 60 sec: 375728.0, 300 sec: 354253.7). Total num frames: 62259200. Throughput: 0: 375736.2. Samples: 62193664. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:43,425][2153185] Avg episode reward: [(0, '5819.084')] [2023-01-11 19:30:48,476][2153185] Fps is (10 sec: 373017.6, 60 sec: 375538.5, 300 sec: 354867.0). Total num frames: 64159744. Throughput: 0: 375304.5. Samples: 63307776. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:48,477][2153185] Avg episode reward: [(0, '4931.663')] [2023-01-11 19:30:53,422][2153185] Fps is (10 sec: 380175.9, 60 sec: 376842.7, 300 sec: 355649.0). Total num frames: 66060288. Throughput: 0: 376687.2. Samples: 65587200. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:53,423][2153185] Avg episode reward: [(0, '5748.724')] [2023-01-11 19:30:58,423][2153185] Fps is (10 sec: 395291.0, 60 sec: 379017.5, 300 sec: 356975.1). Total num frames: 68091904. Throughput: 0: 379737.8. Samples: 68014080. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:30:58,424][2153185] Avg episode reward: [(0, '5415.865')] [2023-01-11 19:31:03,441][2153185] Fps is (10 sec: 392479.6, 60 sec: 379999.5, 300 sec: 357533.9). Total num frames: 69992448. Throughput: 0: 379724.7. Samples: 69140480. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:31:03,442][2153185] Avg episode reward: [(0, '5741.709')] [2023-01-11 19:31:08,422][2153185] Fps is (10 sec: 373597.7, 60 sec: 378294.7, 300 sec: 357803.1). Total num frames: 71827456. Throughput: 0: 380484.8. Samples: 71385088. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:31:08,423][2153185] Avg episode reward: [(0, '5806.858')] [2023-01-11 19:31:13,425][2153185] Fps is (10 sec: 374146.0, 60 sec: 379000.1, 300 sec: 358340.1). Total num frames: 73728000. Throughput: 0: 379498.7. Samples: 73635840. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:31:13,426][2153185] Avg episode reward: [(0, '5602.576')] [2023-01-11 19:31:18,435][2153185] Fps is (10 sec: 379630.6, 60 sec: 378937.9, 300 sec: 358840.0). Total num frames: 75628544. Throughput: 0: 380018.1. Samples: 74776576. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:31:18,436][2153185] Avg episode reward: [(0, '5567.227')] [2023-01-11 19:31:23,423][2153185] Fps is (10 sec: 373655.4, 60 sec: 379023.9, 300 sec: 359049.8). Total num frames: 77463552. Throughput: 0: 379163.0. Samples: 77010944. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0) [2023-01-11 19:31:23,423][2153185] Avg episode reward: [(0, '6320.190')] [2023-01-11 19:31:23,427][2153185] Saving new best policy, reward=6320.190! [2023-01-11 19:31:28,423][2153185] Fps is (10 sec: 367428.0, 60 sec: 377922.6, 300 sec: 359228.6). Total num frames: 79298560. Throughput: 0: 378658.5. Samples: 79233024. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0) [2023-01-11 19:31:28,424][2153185] Avg episode reward: [(0, '6510.601')] [2023-01-11 19:31:28,431][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000012096_79298560.pth... [2023-01-11 19:31:28,499][2153185] Saving new best policy, reward=6510.601! [2023-01-11 19:31:33,423][2153185] Fps is (10 sec: 366976.3, 60 sec: 376837.8, 300 sec: 359400.9). Total num frames: 81133568. Throughput: 0: 378048.5. Samples: 80300032. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0) [2023-01-11 19:31:33,424][2153185] Avg episode reward: [(0, '6344.935')] [2023-01-11 19:31:38,466][2153185] Fps is (10 sec: 378491.2, 60 sec: 377895.9, 300 sec: 360066.8). Total num frames: 83099648. Throughput: 0: 377647.8. Samples: 82597888. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0) [2023-01-11 19:31:38,467][2153185] Avg episode reward: [(0, '6454.606')] [2023-01-11 19:31:43,421][2153185] Fps is (10 sec: 380194.7, 60 sec: 377943.4, 300 sec: 360282.8). Total num frames: 84934656. Throughput: 0: 374349.5. Samples: 84858880. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:31:43,421][2153185] Avg episode reward: [(0, '6075.015')] [2023-01-11 19:31:48,424][2153185] Fps is (10 sec: 375147.6, 60 sec: 378254.3, 300 sec: 360690.6). Total num frames: 86835200. Throughput: 0: 374792.6. Samples: 85999616. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:31:48,424][2153185] Avg episode reward: [(0, '6092.570')] [2023-01-11 19:31:53,423][2153185] Fps is (10 sec: 380028.3, 60 sec: 377919.0, 300 sec: 361086.4). Total num frames: 88735744. Throughput: 0: 375369.1. Samples: 88276992. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:31:53,424][2153185] Avg episode reward: [(0, '5996.674')] [2023-01-11 19:31:58,423][2153185] Fps is (10 sec: 373559.8, 60 sec: 374647.3, 300 sec: 361203.8). Total num frames: 90570752. Throughput: 0: 375071.7. Samples: 90513408. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:31:58,424][2153185] Avg episode reward: [(0, '6051.410')] [2023-01-11 19:32:03,422][2153185] Fps is (10 sec: 373595.6, 60 sec: 374766.2, 300 sec: 361575.5). Total num frames: 92471296. Throughput: 0: 375119.1. Samples: 91652096. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:32:03,423][2153185] Avg episode reward: [(0, '6075.545')] [2023-01-11 19:32:08,424][2153185] Fps is (10 sec: 380091.6, 60 sec: 375729.7, 300 sec: 361928.2). Total num frames: 94371840. Throughput: 0: 375819.3. Samples: 93923328. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:32:08,425][2153185] Avg episode reward: [(0, '5770.103')] [2023-01-11 19:32:13,424][2153185] Fps is (10 sec: 373479.6, 60 sec: 374654.9, 300 sec: 362023.5). Total num frames: 96206848. Throughput: 0: 376097.7. Samples: 96157696. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:32:13,425][2153185] Avg episode reward: [(0, '6145.203')] [2023-01-11 19:32:18,423][2153185] Fps is (10 sec: 386687.5, 60 sec: 376905.1, 300 sec: 362842.7). Total num frames: 98238464. Throughput: 0: 379653.4. Samples: 97384448. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0) [2023-01-11 19:32:18,424][2153185] Avg episode reward: [(0, '6026.312')] [2023-01-11 19:32:23,203][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000015266_100073472.pth... [2023-01-11 19:32:23,219][2153185] Removing ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000005196_34078720.pth [2023-01-11 19:32:23,220][2153185] Stopping Batcher_0... [2023-01-11 19:32:23,221][2153185] Stopping InferenceWorker_p0-w0... [2023-01-11 19:32:23,221][2153185] Stopping RolloutWorker_w0... [2023-01-11 19:32:23,221][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000015266_100073472.pth... [2023-01-11 19:32:23,235][2153185] Stopping LearnerWorker_p0... [2023-01-11 19:32:23,235][2153185] Component Batcher_0 stopped! [2023-01-11 19:32:23,236][2153185] Component InferenceWorker_p0-w0 stopped! [2023-01-11 19:32:23,236][2153185] Component RolloutWorker_w0 stopped! [2023-01-11 19:32:23,236][2153185] Component LearnerWorker_p0 stopped! [2023-01-11 19:32:23,236][2153185] Batcher 0 profile tree view: batching: 0.3521, releasing_batches: 0.0642 [2023-01-11 19:32:23,236][2153185] InferenceWorker_p0-w0 profile tree view: update_model: 0.4320 one_step: 0.0012 handle_policy_step: 57.3554 deserialize: 0.4865, stack: 0.0681, obs_to_device_normalize: 10.3711, forward: 35.6708, prepare_outputs: 6.7457, send_messages: 0.8052 [2023-01-11 19:32:23,237][2153185] Learner 0 profile tree view: misc: 0.0050, prepare_batch: 5.5690 train: 87.4892 epoch_init: 0.0595, minibatch_init: 0.9957, losses_postprocess: 3.1702, kl_divergence: 5.7630, after_optimizer: 0.3136 calculate_losses: 17.7913 losses_init: 0.0331, forward_head: 2.8800, bptt_initial: 0.1263, bptt: 0.1281, tail: 8.7123, advantages_returns: 1.1141, losses: 3.4779 update: 57.5417 clip: 8.7673 [2023-01-11 19:32:23,237][2153185] RolloutWorker_w0 profile tree view: wait_for_trajectories: 0.0819, enqueue_policy_requests: 5.6467, process_policy_outputs: 3.6701, env_step: 90.1515, finalize_trajectories: 0.1553, complete_rollouts: 0.0656 post_env_step: 19.1398 process_env_step: 7.7900 [2023-01-11 19:32:23,237][2153185] Loop Runner_EvtLoop terminating... [2023-01-11 19:32:23,237][2153185] Runner profile tree view: main_loop: 289.1680 [2023-01-11 19:32:23,238][2153185] Collected {0: 100073472}, FPS: 346073.8 |