apetulante commited on
Commit
b6f7f55
·
1 Parent(s): 42ad6b4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -22,10 +22,10 @@ model-index:
22
  metrics:
23
  - name: Precision
24
  type: precision
25
- value: 0.6979544225842089
26
  - name: Recall
27
  type: recall
28
- value: 0.7110390879680959
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -35,10 +35,10 @@ should probably proofread and complete it, then remove this comment. -->
35
 
36
  This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset.
37
  It achieves the following results on the evaluation set:
38
- - Loss: 1.2737
39
- - Precision: 0.6980
40
- - Recall: 0.7110
41
- - Fscore: 0.7026
42
 
43
  ## Model description
44
 
@@ -69,9 +69,9 @@ The following hyperparameters were used during training:
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore |
71
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
72
- | 0.877 | 1.0 | 815 | 0.8045 | 0.7449 | 0.6495 | 0.6765 |
73
- | 0.5462 | 2.0 | 1630 | 1.0057 | 0.7148 | 0.6566 | 0.6774 |
74
- | 0.2691 | 3.0 | 2445 | 1.2737 | 0.6980 | 0.7110 | 0.7026 |
75
 
76
 
77
  ### Framework versions
 
22
  metrics:
23
  - name: Precision
24
  type: precision
25
+ value: 0.7505623807659564
26
  - name: Recall
27
  type: recall
28
+ value: 0.7243031825553111
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset.
37
  It achieves the following results on the evaluation set:
38
+ - Loss: 1.1413
39
+ - Precision: 0.7506
40
+ - Recall: 0.7243
41
+ - Fscore: 0.7340
42
 
43
  ## Model description
44
 
 
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore |
71
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
72
+ | 0.8556 | 1.0 | 815 | 0.7854 | 0.7461 | 0.5929 | 0.6088 |
73
+ | 0.5369 | 2.0 | 1630 | 0.9014 | 0.7549 | 0.7278 | 0.7359 |
74
+ | 0.2571 | 3.0 | 2445 | 1.1413 | 0.7506 | 0.7243 | 0.7340 |
75
 
76
 
77
  ### Framework versions