File size: 27,256 Bytes
7a1d06b ab674e7 7a1d06b ab674e7 7a1d06b ab674e7 7a1d06b ab674e7 7a1d06b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
# filename: recastmlp_llama_model.py
from .configuration_recastmlp_llama import RECASTMLP_llama
from transformers import PreTrainedModel
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Union, List
from transformers import AutoConfig
from transformers.utils import logging
from transformers.cache_utils import Cache, StaticCache
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
logger = logging.get_logger(__name__)
class MLPTemplateBank(nn.Module):
def __init__(self, config, num_templates):
"""
Initialize template bank for MLP layers
Args:
config: LlamaConfig instance
num_templates: Number of templates in bank
"""
super().__init__()
self.num_templates = config.num_templates
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
# Create templates for gate, up and down projections
self.gate_templates = nn.Parameter(
torch.stack(
[
torch.empty(self.intermediate_size, self.hidden_size)
for _ in range(self.num_templates)
]
)
)
self.up_templates = nn.Parameter(
torch.stack(
[
torch.empty(self.intermediate_size, self.hidden_size)
for _ in range(self.num_templates)
]
)
)
self.down_templates = nn.Parameter(
torch.stack(
[
torch.empty(self.hidden_size, self.intermediate_size)
for _ in range(self.num_templates)
]
)
)
# Initialize templates
for i in range(self.num_templates):
nn.init.kaiming_normal_(self.gate_templates[i])
nn.init.kaiming_normal_(self.up_templates[i])
nn.init.kaiming_normal_(self.down_templates[i])
self.coefficient_shape = (self.num_templates, 1, 1)
def forward(self, gate_coeffs, up_coeffs, down_coeffs):
"""Generate weights from coefficients"""
gate_weights = (self.gate_templates * gate_coeffs).sum(0)
up_weights = (self.up_templates * up_coeffs).sum(0)
down_weights = (self.down_templates * down_coeffs).sum(0)
return gate_weights, up_weights, down_weights
def __repr__(self):
return f"MLPTemplateBank(num_templates={self.num_templates}, hidden_size={self.hidden_size}, intermediate_size={self.intermediate_size})"
class SharedLlamaMLP(nn.Module):
def __init__(self, config, bank):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.bank = bank
num_cf = config.num_cf
# Coefficients for template bank
self.gate_coefficients = nn.ParameterList(
[nn.Parameter(torch.zeros(bank.coefficient_shape)) for _ in range(num_cf)]
)
self.up_coefficients = nn.ParameterList(
[nn.Parameter(torch.zeros(bank.coefficient_shape)) for _ in range(num_cf)]
)
self.down_coefficients = nn.ParameterList(
[nn.Parameter(torch.zeros(bank.coefficient_shape)) for _ in range(num_cf)]
)
# Initialize coefficients
for cf in self.gate_coefficients:
nn.init.orthogonal_(cf)
for cf in self.up_coefficients:
nn.init.orthogonal_(cf)
for cf in self.down_coefficients:
nn.init.orthogonal_(cf)
# Biases
self.gate_bias = (
nn.Parameter(torch.zeros(self.intermediate_size))
if config.mlp_bias
else None
)
self.up_bias = (
nn.Parameter(torch.zeros(self.intermediate_size))
if config.mlp_bias
else None
)
self.down_bias = (
nn.Parameter(torch.zeros(self.hidden_size)) if config.mlp_bias else None
)
# Activation
# self.act_fn = nn.functional.__dict__[config.hidden_act]
# self.act_fn = keras.activations.swish
self.act_fn = F.silu
def forward(self, x):
# Generate weights using coefficients
gate_weights = []
up_weights = []
down_weights = []
for i in range(len(self.gate_coefficients)):
gate, up, down = self.bank(
self.gate_coefficients[i],
self.up_coefficients[i],
self.down_coefficients[i],
)
gate_weights.append(gate)
up_weights.append(up)
down_weights.append(down)
gate_weights = torch.stack(gate_weights).mean(0)
up_weights = torch.stack(up_weights).mean(0)
down_weights = torch.stack(down_weights).mean(0)
# Apply MLP operations
gate_output = F.linear(x, gate_weights, self.gate_bias)
up_output = F.linear(x, up_weights, self.up_bias)
# Apply activation and down projection
hidden_states = self.act_fn(gate_output) * up_output
output = F.linear(hidden_states, down_weights, self.down_bias)
return output
def __repr__(self):
return (
f"SharedLlamaMLP(hidden_size={self.hidden_size}, "
f"intermediate_size={self.intermediate_size}, "
f"gate_coefficients={len(self.gate_coefficients)}, "
f"up_coefficients={len(self.up_coefficients)}, "
f"down_coefficients={len(self.down_coefficients)})"
)
def fixed_cross_entropy(
source,
target,
num_items_in_batch: int = None,
ignore_index: int = -100,
**kwargs,
):
reduction = "sum" if num_items_in_batch is not None else "mean"
loss = nn.functional.cross_entropy(
source, target, ignore_index=ignore_index, reduction=reduction
)
if reduction == "sum":
loss = loss / num_items_in_batch
return loss
from transformers.models.llama.modeling_llama import (
LlamaDecoderLayer,
LlamaRotaryEmbedding,
LlamaRMSNorm,
apply_rotary_pos_emb,
)
from transformers.modeling_outputs import BaseModelOutputWithPast
class RECASTMLP_llamaModel(PreTrainedModel):
config_class = RECASTMLP_llama
base_model_prefix = "llama"
supports_gradient_checkpointing = True
def __init__(self, config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
# Initialize rotary embeddings
rope_config = config.rope_scaling
if rope_config:
rope_type = rope_config.get("rope_type", "default")
scaling_factor = rope_config.get("factor", 1.0)
else:
rope_type = "default"
scaling_factor = None
original_config = AutoConfig.from_pretrained(
"meta-llama/Llama-3.1-8b", trust_remote_code=True
)
self.rotary_emb = LlamaRotaryEmbedding(
config=original_config,
)
# Create template banks first
self.banks = []
layers_per_group = config.num_hidden_layers // config.num_groups
for _ in range(config.num_groups):
bank = MLPTemplateBank(config, config.num_templates)
self.banks.append(bank)
# Create layers using LlamaDecoderLayer but replace MLPs
self.layers = nn.ModuleList()
for layer_idx in range(config.num_hidden_layers):
# Create standard LlamaDecoderLayer
decoder_layer = LlamaDecoderLayer(config, layer_idx)
# Replace its MLP with our SharedLlamaMLP
group_idx = layer_idx // layers_per_group
group_bank = self.banks[group_idx]
decoder_layer.mlp = SharedLlamaMLP(config, bank=group_bank)
self.layers.append(decoder_layer)
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You must specify exactly one of input_ids or inputs_embeds"
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# Set up cache position if not provided
if cache_position is None:
past_seen_tokens = 0 if past_key_values is None else (
past_key_values.get_seq_length() if isinstance(past_key_values, Cache)
else past_key_values[0][0].size(-2) if past_key_values
else 0
)
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device
)
# Create position embeddings to be shared across the decoder layers
# Set up position IDs if not provided
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# Get updated causal mask
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values,
output_attentions,
)
hidden_states = inputs_embeds
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# Initialize outputs
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
# Process through layers
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
# Final layer norm
hidden_states = self.norm(hidden_states)
# Add last hidden state
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
if isinstance(
pretrained_model_name_or_path, str
) and pretrained_model_name_or_path.endswith(".pt"):
print("Loading from local checkpoint")
# Load from local checkpoint
config = kwargs.get("config", None)
if config is None:
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=True
)
model = cls(config)
checkpoint = torch.load(pretrained_model_name_or_path, map_location="cpu")
state_dict = checkpoint["model_state_dict"]
logger.info(
f"Loaded checkpoint from epoch {checkpoint.get('epoch')} with loss {checkpoint.get('loss')}"
)
missing_keys, unexpected_keys = model.load_state_dict(
state_dict, strict=False
)
if len(missing_keys) > 0:
logger.warning(f"Missing keys: {missing_keys}")
if len(unexpected_keys) > 0:
logger.warning(f"Unexpected keys: {unexpected_keys}")
return model
else:
print("Loading from hub")
# Load from hub using parent's from_pretrained
return super().from_pretrained(
pretrained_model_name_or_path, *model_args, **kwargs
)
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not using_static_cache
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(
causal_mask, min_dtype
)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length),
fill_value=min_dtype,
dtype=dtype,
device=device,
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(
target_length, device=device
) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = (
causal_mask.clone()
) # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = (
causal_mask[:, :, :, :mask_length]
+ attention_mask[:, None, None, :]
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[
:, :, :, :mask_length
].masked_fill(padding_mask, min_dtype)
return causal_mask
class RECASTMLP_LlamaForCausalLM(PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
config_class = RECASTMLP_llama
base_model_prefix = "llama"
supports_gradient_checkpointing = True
def __init__(self, config):
super().__init__(config)
self.model = RECASTMLP_llamaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def loss_function(
self,
logits,
labels,
vocab_size: int,
num_items_in_batch: int = None,
ignore_index: int = -100,
**kwargs,
):
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
shift_logits = shift_logits.view(-1, vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = fixed_cross_entropy(
shift_logits, shift_labels, num_items_in_batch, ignore_index, **kwargs
)
return loss
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in
`[0, ..., config.vocab_size]` or -100 (masked tokens).
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate all logits.
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
loss = None
if labels is not None:
# Calculate batch size for loss function
num_items_in_batch = (
input_ids.size(0) if input_ids is not None else inputs_embeds.size(0)
)
loss = self.loss_function(
logits=logits,
labels=labels,
vocab_size=self.config.vocab_size,
num_items_in_batch=num_items_in_batch,
**kwargs,
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
if isinstance(
pretrained_model_name_or_path, str
) and pretrained_model_name_or_path.endswith(".pt"):
print("Loading from local checkpoint")
config = kwargs.get("config", None)
if config is None:
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=True
)
model = cls(config)
checkpoint = torch.load(pretrained_model_name_or_path, map_location="cpu")
state_dict = checkpoint["model_state_dict"]
missing_keys, unexpected_keys = model.load_state_dict(
state_dict, strict=False
)
if len(missing_keys) > 0:
logger.warning(f"Missing keys: {missing_keys}")
if len(unexpected_keys) > 0:
logger.warning(f"Unexpected keys: {unexpected_keys}")
return model
else:
print("Loading from hub")
return super().from_pretrained(
pretrained_model_name_or_path, *model_args, **kwargs
)
|