File size: 27,256 Bytes
877b677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82548bf
 
 
 
 
 
 
 
 
 
 
 
877b677
82548bf
877b677
82548bf
877b677
 
 
 
 
 
 
 
82548bf
 
 
877b677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
# filename: recastmlp_llama_model.py
from .configuration_recastmlp_llama import RECASTMLP_llama
from transformers import PreTrainedModel
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Union, List
from transformers import AutoConfig
from transformers.utils import logging
from transformers.cache_utils import Cache, StaticCache
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import AttentionMaskConverter

logger = logging.get_logger(__name__)


class MLPTemplateBank(nn.Module):
    def __init__(self, config, num_templates):
        """
        Initialize template bank for MLP layers
        Args:
            config: LlamaConfig instance
            num_templates: Number of templates in bank
        """
        super().__init__()
        self.num_templates = config.num_templates
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size

        # Create templates for gate, up and down projections
        self.gate_templates = nn.Parameter(
            torch.stack(
                [
                    torch.empty(self.intermediate_size, self.hidden_size)
                    for _ in range(self.num_templates)
                ]
            )
        )

        self.up_templates = nn.Parameter(
            torch.stack(
                [
                    torch.empty(self.intermediate_size, self.hidden_size)
                    for _ in range(self.num_templates)
                ]
            )
        )

        self.down_templates = nn.Parameter(
            torch.stack(
                [
                    torch.empty(self.hidden_size, self.intermediate_size)
                    for _ in range(self.num_templates)
                ]
            )
        )

        # Initialize templates
        for i in range(self.num_templates):
            nn.init.kaiming_normal_(self.gate_templates[i])
            nn.init.kaiming_normal_(self.up_templates[i])
            nn.init.kaiming_normal_(self.down_templates[i])

        self.coefficient_shape = (self.num_templates, 1, 1)

    def forward(self, gate_coeffs, up_coeffs, down_coeffs):
        """Generate weights from coefficients"""
        gate_weights = (self.gate_templates * gate_coeffs).sum(0)
        up_weights = (self.up_templates * up_coeffs).sum(0)
        down_weights = (self.down_templates * down_coeffs).sum(0)
        return gate_weights, up_weights, down_weights

    def __repr__(self):
        return f"MLPTemplateBank(num_templates={self.num_templates}, hidden_size={self.hidden_size}, intermediate_size={self.intermediate_size})"


class SharedLlamaMLP(nn.Module):
    def __init__(self, config, bank):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.bank = bank
        num_cf = config.num_cf

        # Coefficients for template bank
        self.gate_coefficients = nn.ParameterList(
            [nn.Parameter(torch.zeros(bank.coefficient_shape)) for _ in range(num_cf)]
        )
        self.up_coefficients = nn.ParameterList(
            [nn.Parameter(torch.zeros(bank.coefficient_shape)) for _ in range(num_cf)]
        )
        self.down_coefficients = nn.ParameterList(
            [nn.Parameter(torch.zeros(bank.coefficient_shape)) for _ in range(num_cf)]
        )

        # Initialize coefficients
        for cf in self.gate_coefficients:
            nn.init.orthogonal_(cf)
        for cf in self.up_coefficients:
            nn.init.orthogonal_(cf)
        for cf in self.down_coefficients:
            nn.init.orthogonal_(cf)

        # Biases
        self.gate_bias = (
            nn.Parameter(torch.zeros(self.intermediate_size))
            if config.mlp_bias
            else None
        )
        self.up_bias = (
            nn.Parameter(torch.zeros(self.intermediate_size))
            if config.mlp_bias
            else None
        )
        self.down_bias = (
            nn.Parameter(torch.zeros(self.hidden_size)) if config.mlp_bias else None
        )

        # Activation
        # self.act_fn = nn.functional.__dict__[config.hidden_act]
        # self.act_fn = keras.activations.swish
        self.act_fn = F.silu

    def forward(self, x):
        # Generate weights using coefficients
        gate_weights = []
        up_weights = []
        down_weights = []

        for i in range(len(self.gate_coefficients)):
            gate, up, down = self.bank(
                self.gate_coefficients[i],
                self.up_coefficients[i],
                self.down_coefficients[i],
            )
            gate_weights.append(gate)
            up_weights.append(up)
            down_weights.append(down)

        gate_weights = torch.stack(gate_weights).mean(0)
        up_weights = torch.stack(up_weights).mean(0)
        down_weights = torch.stack(down_weights).mean(0)

        # Apply MLP operations
        gate_output = F.linear(x, gate_weights, self.gate_bias)
        up_output = F.linear(x, up_weights, self.up_bias)

        # Apply activation and down projection
        hidden_states = self.act_fn(gate_output) * up_output
        output = F.linear(hidden_states, down_weights, self.down_bias)

        return output

    def __repr__(self):
        return (
            f"SharedLlamaMLP(hidden_size={self.hidden_size}, "
            f"intermediate_size={self.intermediate_size}, "
            f"gate_coefficients={len(self.gate_coefficients)}, "
            f"up_coefficients={len(self.up_coefficients)}, "
            f"down_coefficients={len(self.down_coefficients)})"
        )


def fixed_cross_entropy(
    source,
    target,
    num_items_in_batch: int = None,
    ignore_index: int = -100,
    **kwargs,
):
    reduction = "sum" if num_items_in_batch is not None else "mean"
    loss = nn.functional.cross_entropy(
        source, target, ignore_index=ignore_index, reduction=reduction
    )
    if reduction == "sum":
        loss = loss / num_items_in_batch
    return loss


from transformers.models.llama.modeling_llama import (
    LlamaDecoderLayer,
    LlamaRotaryEmbedding,
    LlamaRMSNorm,
    apply_rotary_pos_emb,
)
from transformers.modeling_outputs import BaseModelOutputWithPast


class RECASTMLP_llamaModel(PreTrainedModel):
    config_class = RECASTMLP_llama
    base_model_prefix = "llama"
    supports_gradient_checkpointing = True

    def __init__(self, config):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(
            config.vocab_size, config.hidden_size, self.padding_idx
        )
        # Initialize rotary embeddings
        rope_config = config.rope_scaling
        if rope_config:
            rope_type = rope_config.get("rope_type", "default")
            scaling_factor = rope_config.get("factor", 1.0)
        else:
            rope_type = "default"
            scaling_factor = None
        original_config = AutoConfig.from_pretrained(
            "meta-llama/Llama-3.1-8b", trust_remote_code=True
        )
        self.rotary_emb = LlamaRotaryEmbedding(
            config=original_config,
        )

        # Create template banks first
        self.banks = []
        layers_per_group = config.num_hidden_layers // config.num_groups
        for _ in range(config.num_groups):
            bank = MLPTemplateBank(config, config.num_templates)
            self.banks.append(bank)

        # Create layers using LlamaDecoderLayer but replace MLPs
        self.layers = nn.ModuleList()
        for layer_idx in range(config.num_hidden_layers):
            # Create standard LlamaDecoderLayer
            decoder_layer = LlamaDecoderLayer(config, layer_idx)

            # Replace its MLP with our SharedLlamaMLP
            group_idx = layer_idx // layers_per_group
            group_bank = self.banks[group_idx]
            decoder_layer.mlp = SharedLlamaMLP(config, bank=group_bank)

            self.layers.append(decoder_layer)

        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.gradient_checkpointing = False

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **flash_attn_kwargs,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You must specify exactly one of input_ids or inputs_embeds"
            )

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
        # Set up cache position if not provided
        if cache_position is None:
            past_seen_tokens = 0 if past_key_values is None else (
                past_key_values.get_seq_length() if isinstance(past_key_values, Cache) 
                else past_key_values[0][0].size(-2) if past_key_values 
                else 0
            )
            cache_position = torch.arange(
                past_seen_tokens, 
                past_seen_tokens + inputs_embeds.shape[1], 
                device=inputs_embeds.device
            )
        # Create position embeddings to be shared across the decoder layers
        # Set up position IDs if not provided
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)
        # Get updated causal mask
        causal_mask = self._update_causal_mask(
            attention_mask,
            inputs_embeds,
            cache_position,
            past_key_values,
            output_attentions,
        )
        hidden_states = inputs_embeds
        position_embeddings = self.rotary_emb(hidden_states, position_ids)
        

        # Initialize outputs
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        # Process through layers
        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    position_embeddings,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    position_embeddings=position_embeddings,
                    **flash_attn_kwargs,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        # Final layer norm
        hidden_states = self.norm(hidden_states)

        # Add last hidden state
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
                if v is not None
            )

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        if isinstance(
            pretrained_model_name_or_path, str
        ) and pretrained_model_name_or_path.endswith(".pt"):
            print("Loading from local checkpoint")
            # Load from local checkpoint
            config = kwargs.get("config", None)
            if config is None:
                config = AutoConfig.from_pretrained(
                    pretrained_model_name_or_path, trust_remote_code=True
                )

            model = cls(config)
            checkpoint = torch.load(pretrained_model_name_or_path, map_location="cpu")
            state_dict = checkpoint["model_state_dict"]
            logger.info(
                f"Loaded checkpoint from epoch {checkpoint.get('epoch')} with loss {checkpoint.get('loss')}"
            )

            missing_keys, unexpected_keys = model.load_state_dict(
                state_dict, strict=False
            )

            if len(missing_keys) > 0:
                logger.warning(f"Missing keys: {missing_keys}")
            if len(unexpected_keys) > 0:
                logger.warning(f"Unexpected keys: {unexpected_keys}")

            return model
        else:
            print("Loading from hub")
            # Load from hub using parent's from_pretrained
            return super().from_pretrained(
                pretrained_model_name_or_path, *model_args, **kwargs
            )

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool,
    ):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = (
            past_key_values.get_seq_length() if past_key_values is not None else 0
        )
        using_static_cache = isinstance(past_key_values, StaticCache)

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if (
            self.config._attn_implementation == "sdpa"
            and not using_static_cache
            and not output_attentions
        ):
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype, device = input_tensor.dtype, input_tensor.device
        sequence_length = input_tensor.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            device=device,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type == "cuda"
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            min_dtype = torch.finfo(dtype).min
            causal_mask = AttentionMaskConverter._unmask_unattended(
                causal_mask, min_dtype
            )

        return causal_mask

    @staticmethod
    def _prepare_4d_causal_attention_mask_with_cache_position(
        attention_mask: torch.Tensor,
        sequence_length: int,
        target_length: int,
        dtype: torch.dtype,
        device: torch.device,
        cache_position: torch.Tensor,
        batch_size: int,
        **kwargs,
    ):
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length),
                fill_value=min_dtype,
                dtype=dtype,
                device=device,
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(
                target_length, device=device
            ) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
            if attention_mask is not None:
                causal_mask = (
                    causal_mask.clone()
                )  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_mask = (
                    causal_mask[:, :, :, :mask_length]
                    + attention_mask[:, None, None, :]
                )
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[
                    :, :, :, :mask_length
                ].masked_fill(padding_mask, min_dtype)

        return causal_mask


class RECASTMLP_LlamaForCausalLM(PreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    _tp_plan = {"lm_head": "colwise_rep"}
    config_class = RECASTMLP_llama
    base_model_prefix = "llama"
    supports_gradient_checkpointing = True

    def __init__(self, config):
        super().__init__(config)
        self.model = RECASTMLP_llamaModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def loss_function(
        self,
        logits,
        labels,
        vocab_size: int,
        num_items_in_batch: int = None,
        ignore_index: int = -100,
        **kwargs,
    ):
        # Upcast to float if we need to compute the loss to avoid potential precision issues
        logits = logits.float()
        # Shift so that tokens < n predict n
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = labels[..., 1:].contiguous()
        # Flatten the tokens
        shift_logits = shift_logits.view(-1, vocab_size)
        shift_labels = shift_labels.view(-1)
        # Enable model parallelism
        shift_labels = shift_labels.to(shift_logits.device)
        loss = fixed_cross_entropy(
            shift_logits, shift_labels, num_items_in_batch, ignore_index, **kwargs
        )
        return loss

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        num_logits_to_keep: int = 0,
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        """
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should be in
                `[0, ..., config.vocab_size]` or -100 (masked tokens).
            num_logits_to_keep (`int`, *optional*):
                Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate all logits.
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs[0]
        # Only compute necessary logits
        logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])

        loss = None
        if labels is not None:
            # Calculate batch size for loss function
            num_items_in_batch = (
                input_ids.size(0) if input_ids is not None else inputs_embeds.size(0)
            )
            loss = self.loss_function(
                logits=logits,
                labels=labels,
                vocab_size=self.config.vocab_size,
                num_items_in_batch=num_items_in_batch,
                **kwargs,
            )

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        **kwargs,
    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        if isinstance(
            pretrained_model_name_or_path, str
        ) and pretrained_model_name_or_path.endswith(".pt"):
            print("Loading from local checkpoint")
            config = kwargs.get("config", None)
            if config is None:
                config = AutoConfig.from_pretrained(
                    pretrained_model_name_or_path, trust_remote_code=True
                )

            model = cls(config)
            checkpoint = torch.load(pretrained_model_name_or_path, map_location="cpu")
            state_dict = checkpoint["model_state_dict"]

            missing_keys, unexpected_keys = model.load_state_dict(
                state_dict, strict=False
            )

            if len(missing_keys) > 0:
                logger.warning(f"Missing keys: {missing_keys}")
            if len(unexpected_keys) > 0:
                logger.warning(f"Unexpected keys: {unexpected_keys}")

            return model
        else:
            print("Loading from hub")
            return super().from_pretrained(
                pretrained_model_name_or_path, *model_args, **kwargs
            )