from transformers import PretrainedConfig class RECASTMLP_llama(PretrainedConfig): model_type = "recastmlp_llama" attribute_map = { "hidden_size": "hidden_size", "num_attention_heads": "num_attention_heads", } def __init__( self, vocab_size=128256, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=131072, initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, pad_token_id=None, bos_token_id=128000, eos_token_id=128001, pretraining_tp=1, tie_word_embeddings=False, rope_theta=500000.0, rope_scaling={ "factor": 8.0, "low_freq_factor": 1.0, "high_freq_factor": 4.0, "original_max_position_embeddings": 8192, "rope_type": "llama3", }, attention_bias=False, attention_dropout=0.0, mlp_bias=False, # Template-specific configs num_templates=4, num_groups=8, num_cf=1, torch_dtype="bfloat16", **kwargs ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.mlp_bias = mlp_bias self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.torch_dtype = torch_dtype # Template-specific configs self.num_templates = num_templates self.num_groups = num_groups self.num_cf = num_cf super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs )