File size: 14,381 Bytes
281bd5c
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4fe50d8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4fe50d950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4fe50d9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4fe50da70>", "_build": "<function ActorCriticPolicy._build at 0x7fd4fe50db00>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4fe50db90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4fe50dc20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4fe50dcb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4fe50dd40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4fe50ddd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4fe50de60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd4fe558a80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660024625.8567111, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2auz2FO9O5gtARuJycx7Lz6io7e9ksNwAAgD8AAIA/5icQPXhojD+L4RI9/j8bv1YTGj2u0zm8AAAAAAAAAABanUs+e1TcusBj0zs+Xw+3HlAVu1Cn47gAAIA/AACAPzNuEL2g46w/sOqqvpBIxr5J2mq8ti7JvQAAAAAAAAAAzf1aPfacS7reJTC7hZurtomUn7rKako6AACAPwAAgD9mChG8riWOuqA25zrcFpY1qGynOsw7BroAAIA/AACAPwBJID4FYay70r+uO9Jpg7lxpwe9VU9pugAAgD8AAIA/mlHlPSlQG7ookJm5RSR+tnX+W7tr2LM4AACAPwAAgD+TPkY+CHaWvPps6TtOfye65bMHvhWbGbsAAIA/AACAP/OGrD1cqzy6zpVwttxherFpZrc64ouONQAAgD8AAIA/Zpq2O+HMmbqBfaC7qdaotXN4qbpTjBY1AACAPwAAgD8aMbQ92gWyP17+HD9/ZGq+X8M1PTs2nj4AAAAAAAAAAGbCJr0UTIK6t06YO+efk7WCQdq3voKPtAAAgD8AAIA/zVsDPVzzHrqOGt46pmqOtb40r7txOgG6AACAPwAAgD8axeY9Urjlue2DBTkH6Qm3lh8VOzWNFbgAAIA/AACAP83sGzx7nJe6wlB5OhfXbTVpWvc6rSCQuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZED2eveKZUCUhpRSlIwBbJRN6AOMAXSUR0Cn/EvNFBppdX2UKGgGaAloD0MIEY/Ey1PUZECUhpRSlGgVTegDaBZHQKf9wtoSL611fZQoaAZoCWgPQwjqkQa3tUBkQJSGlFKUaBVN6ANoFkdAp/3PbypaR3V9lChoBmgJaA9DCN6swfuqqFBAlIaUUpRoFUvGaBZHQKf/Jk6tDD11fZQoaAZoCWgPQwjOGVHam+9pQJSGlFKUaBVN6ANoFkdAp//TOVxCIHV9lChoBmgJaA9DCBCVRszswGJAlIaUUpRoFU3oA2gWR0CoALfdRBNVdX2UKGgGaAloD0MIdQKaCBuiZECUhpRSlGgVTegDaBZHQKgDXBw++uh1fZQoaAZoCWgPQwiTyD7IMhRpQJSGlFKUaBVN6ANoFkdAqAN6PsAvMHV9lChoBmgJaA9DCNyeILHdgWZAlIaUUpRoFU3oA2gWR0CoA7YwZflZdX2UKGgGaAloD0MIaOif4GIHZkCUhpRSlGgVTegDaBZHQKgD6R/ViF11fZQoaAZoCWgPQwjcgM8PI1NjQJSGlFKUaBVN6ANoFkdAqDUCbz9S/HV9lChoBmgJaA9DCE8+PbbljWdAlIaUUpRoFU3oA2gWR0CoOESSV4X5dX2UKGgGaAloD0MI3e7lPjm/ZECUhpRSlGgVTegDaBZHQKg4Wg8r7O51fZQoaAZoCWgPQwjSGRh5WSNlQJSGlFKUaBVN6ANoFkdAqDynq9oN/nV9lChoBmgJaA9DCPGCiNS0d0NAlIaUUpRoFUuxaBZHQKg8z6Y3Ns51fZQoaAZoCWgPQwi4Agr19BhiQJSGlFKUaBVN6ANoFkdAqEDaw+t8u3V9lChoBmgJaA9DCB04Z0Rpz1FAlIaUUpRoFUuyaBZHQKhBTYDklu51fZQoaAZoCWgPQwjpQxfUN8liQJSGlFKUaBVN6ANoFkdAqEGPPNVzZHV9lChoBmgJaA9DCOc24V4ZJmFAlIaUUpRoFU3oA2gWR0CoQzWJiy6ddX2UKGgGaAloD0MIu5hmutcbZUCUhpRSlGgVTegDaBZHQKhEw3++/QB1fZQoaAZoCWgPQwgFwePbOwJnQJSGlFKUaBVN6ANoFkdAqETQgvDgqHV9lChoBmgJaA9DCN7oYz6gCGNAlIaUUpRoFU3oA2gWR0CoRjQfp2U0dX2UKGgGaAloD0MIOdTvwtZEZ0CUhpRSlGgVTegDaBZHQKhG4XIlt0p1fZQoaAZoCWgPQwgsuvWanshgQJSGlFKUaBVN6ANoFkdAqEfUrNGEwnV9lChoBmgJaA9DCOpA1lMrSWNAlIaUUpRoFU3oA2gWR0CoSqJ8OTaCdX2UKGgGaAloD0MIcEIhAg6vZECUhpRSlGgVTegDaBZHQKhKwbfgrH51fZQoaAZoCWgPQwhyMnGrIGllQJSGlFKUaBVN6ANoFkdAqEr9yxRl6XV9lChoBmgJaA9DCBE66BKO5WVAlIaUUpRoFU3oA2gWR0CoSy7aqS5idX2UKGgGaAloD0MI5ldzgOAcYkCUhpRSlGgVTegDaBZHQKh78tCAtnR1fZQoaAZoCWgPQwjgMNEghUdnQJSGlFKUaBVN6ANoFkdAqH8K0pmVaHV9lChoBmgJaA9DCLjIPV3dRWhAlIaUUpRoFU3oA2gWR0CogxoOx0MgdX2UKGgGaAloD0MI1skZijvJZECUhpRSlGgVTegDaBZHQKiHCTINmUZ1fZQoaAZoCWgPQwh4nKIjOX5lQJSGlFKUaBVN6ANoFkdAqId11IRRM3V9lChoBmgJaA9DCB/2QgHb0mBAlIaUUpRoFU3oA2gWR0Coh6/En9ehdX2UKGgGaAloD0MI95LGaB1PZUCUhpRSlGgVTegDaBZHQKiJOdIXj2l1fZQoaAZoCWgPQwgPe6GAbTZkQJSGlFKUaBVN6ANoFkdAqIqla8pTdnV9lChoBmgJaA9DCLU1IhgH02BAlIaUUpRoFU3oA2gWR0CoirKa5PM0dX2UKGgGaAloD0MIcmw9Qzh2S0CUhpRSlGgVS61oFkdAqIsbXFtKqXV9lChoBmgJaA9DCMFY38Dkr2JAlIaUUpRoFU3oA2gWR0Coi/JUHY6GdX2UKGgGaAloD0MIPDCA8CElZUCUhpRSlGgVTegDaBZHQKiMjoJzDGd1fZQoaAZoCWgPQwhKfsSv2OdkQJSGlFKUaBVN6ANoFkdAqI1ic5Ke1HV9lChoBmgJaA9DCBwJNNjUGU9AlIaUUpRoFUu8aBZHQKiPtIy0rsl1fZQoaAZoCWgPQwg7ONibGF9mQJSGlFKUaBVN6ANoFkdAqI+1FOO803V9lChoBmgJaA9DCGwjnuxmAGVAlIaUUpRoFU3oA2gWR0Coj87CSA6NdX2UKGgGaAloD0MI4ZhlTwIwZ0CUhpRSlGgVTegDaBZHQKiQACEHt4R1fZQoaAZoCWgPQwg+IqZEks5kQJSGlFKUaBVN6ANoFkdAqJAqMefZmXV9lChoBmgJaA9DCPCGNCpwXWZAlIaUUpRoFU3oA2gWR0CowOQw0wajdX2UKGgGaAloD0MISDMWTaejcECUhpRSlGgVTTQBaBZHQKjBt/rjYI11fZQoaAZoCWgPQwhm2v6VlQxDQJSGlFKUaBVLwGgWR0CowwHNX5nEdX2UKGgGaAloD0MIrhHBOLjNZkCUhpRSlGgVTegDaBZHQKjDn09QoCx1fZQoaAZoCWgPQwit/DIYo5VkQJSGlFKUaBVN6ANoFkdAqMeR68g6l3V9lChoBmgJaA9DCOxNDMlJ3GNAlIaUUpRoFU3oA2gWR0CozSIv8IiUdX2UKGgGaAloD0MIIToEjoSkZECUhpRSlGgVTegDaBZHQKjNzT987ZF1fZQoaAZoCWgPQwivsyH/TN1lQJSGlFKUaBVN6ANoFkdAqM+D50r9VHV9lChoBmgJaA9DCH3NctloT2VAlIaUUpRoFU3oA2gWR0Co0RfmDDjzdX2UKGgGaAloD0MI+kffpOlTZECUhpRSlGgVTegDaBZHQKjRJcO9WZJ1fZQoaAZoCWgPQwjn/upxXxFmQJSGlFKUaBVN6ANoFkdAqNGbHsC1Z3V9lChoBmgJaA9DCPkwe9n2nGNAlIaUUpRoFU3oA2gWR0Co1DGsFMZhdX2UKGgGaAloD0MIxHqjVhhwYECUhpRSlGgVTegDaBZHQKjXCrFwT/R1fZQoaAZoCWgPQwix9+KLdstmQJSGlFKUaBVN6ANoFkdAqNcL5uZTh3V9lChoBmgJaA9DCFN7EW1HN2BAlIaUUpRoFU3oA2gWR0Co1ynrIHTrdX2UKGgGaAloD0MId6IkJNJmXUCUhpRSlGgVTegDaBZHQKjXZI/Z/Td1fZQoaAZoCWgPQwjpDfeRWxtkQJSGlFKUaBVN6ANoFkdAqNmDQw9JSXV9lChoBmgJaA9DCChJ10y+4GZAlIaUUpRoFU3oA2gWR0CpCXNMwlBydX2UKGgGaAloD0MIdHy0OGMCTECUhpRSlGgVS8BoFkdAqQqy508vEnV9lChoBmgJaA9DCI7NjlTf9F5AlIaUUpRoFU3oA2gWR0CpCulFUhmodX2UKGgGaAloD0MIGXPXEjIwcECUhpRSlGgVTWQBaBZHQKkLdSQ5myx1fZQoaAZoCWgPQwirWWd8X4NnQJSGlFKUaBVN6ANoFkdAqQuF9KEnLXV9lChoBmgJaA9DCA7cgTrlLW9AlIaUUpRoFU0gAmgWR0CpDPR1xKg7dX2UKGgGaAloD0MIrkoi+6A/ZUCUhpRSlGgVTegDaBZHQKkPFtLteD51fZQoaAZoCWgPQwiTjJyFvfBgQJSGlFKUaBVN6ANoFkdAqRNHthNM5HV9lChoBmgJaA9DCMnLmlhgKGNAlIaUUpRoFU3oA2gWR0CpE/kd3jdYdX2UKGgGaAloD0MIMCqpE1BAY0CUhpRSlGgVTegDaBZHQKkVtKmsNlR1fZQoaAZoCWgPQwgMsmX5OrRgQJSGlFKUaBVN6ANoFkdAqRc9W0Z3tHV9lChoBmgJaA9DCADkhAmj8T9AlIaUUpRoFUupaBZHQKkXRD9fkWB1fZQoaAZoCWgPQwieB3dn7cVjQJSGlFKUaBVN6ANoFkdAqRdKdH2AXnV9lChoBmgJaA9DCKIkJNL2qXBAlIaUUpRoFU2XAmgWR0CpGrrDZUT+dX2UKGgGaAloD0MIdha9UwHQcECUhpRSlGgVTT4BaBZHQKkdKIldC3R1fZQoaAZoCWgPQwg3jILgcbhjQJSGlFKUaBVN6ANoFkdAqR08VYZEUnV9lChoBmgJaA9DCMmwijcymlpAlIaUUpRoFU3oA2gWR0CpHT0GeMAFdX2UKGgGaAloD0MIXoB9dGopYECUhpRSlGgVTegDaBZHQKkdWfozN2V1fZQoaAZoCWgPQwjrOlRTkptkQJSGlFKUaBVN6ANoFkdAqR+aIDYAbXV9lChoBmgJaA9DCAEUI0tmFWFAlIaUUpRoFU3oA2gWR0CpT1xVIZqEdX2UKGgGaAloD0MIjNr9KsB9TECUhpRSlGgVS5poFkdAqU9tzjm0V3V9lChoBmgJaA9DCKg0YmaflVBAlIaUUpRoFUunaBZHQKlPtkqc3ER1fZQoaAZoCWgPQwhzKhkAqmJwQJSGlFKUaBVNLgFoFkdAqVCORq46O3V9lChoBmgJaA9DCFzHuOLieWJAlIaUUpRoFU3oA2gWR0CpUJQHJLdvdX2UKGgGaAloD0MICmXh6yuncUCUhpRSlGgVTc0BaBZHQKlQnkQwsXl1fZQoaAZoCWgPQwgRiq2g6VxjQJSGlFKUaBVN6ANoFkdAqVC9GEwnIHV9lChoBmgJaA9DCNJVurvOg2VAlIaUUpRoFU3oA2gWR0CpUThMzuWsdX2UKGgGaAloD0MIHJqy0w/Qb0CUhpRSlGgVTREBaBZHQKlRyNtqHoJ1fZQoaAZoCWgPQwgpIsMqXmVjQJSGlFKUaBVN6ANoFkdAqVJhZ4fOlnV9lChoBmgJaA9DCBlYx/GDOHFAlIaUUpRoFU1bAWgWR0CpUuZnctXgdX2UKGgGaAloD0MId9oaEQxqZECUhpRSlGgVTegDaBZHQKlUISjgydp1fZQoaAZoCWgPQwhNLzGWaZJkQJSGlFKUaBVN6ANoFkdAqVjvDHfdh3V9lChoBmgJaA9DCOFFX0Ea62RAlIaUUpRoFU3oA2gWR0CpXIhGYrrgdX2UKGgGaAloD0MIxAq3fCQ1X0CUhpRSlGgVTegDaBZHQKlcj8PWhAZ1fZQoaAZoCWgPQwhh4Ln3cKBkQJSGlFKUaBVN6ANoFkdAqWTrpJPIn3V9lChoBmgJaA9DCJ5+UBep7GZAlIaUUpRoFU3oA2gWR0CpZdyamXPadX2UKGgGaAloD0MIXYdqSrLjY0CUhpRSlGgVTegDaBZHQKll7w1BMSN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}