apv53-fit commited on
Commit
c8f1337
·
verified ·
1 Parent(s): 4d0a20e

End of training

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: OthmaneJ/distil-wav2vec2
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - marsyas/gtzan
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: apv53-finetuned-gtzan
13
+ results:
14
+ - task:
15
+ name: Audio Classification
16
+ type: audio-classification
17
+ dataset:
18
+ name: GTZAN
19
+ type: marsyas/gtzan
20
+ config: all
21
+ split: train
22
+ args: all
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.81
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # apv53-finetuned-gtzan
33
+
34
+ This model is a fine-tuned version of [OthmaneJ/distil-wav2vec2](https://huggingface.co/OthmaneJ/distil-wav2vec2) on the GTZAN dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.7992
37
+ - Accuracy: 0.81
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 3e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 5
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.4747 | 1.0 | 113 | 0.8103 | 0.77 |
71
+ | 0.3728 | 2.0 | 226 | 0.8200 | 0.78 |
72
+ | 0.3871 | 3.0 | 339 | 0.8358 | 0.79 |
73
+ | 0.2235 | 4.0 | 452 | 0.9072 | 0.76 |
74
+ | 0.1195 | 5.0 | 565 | 0.7992 | 0.81 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.48.0.dev0
80
+ - Pytorch 2.5.1+cu121
81
+ - Datasets 3.2.0
82
+ - Tokenizers 0.21.0