apv53-fit commited on
Commit
5b75954
1 Parent(s): 6690ea0

End of training

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: addy88/wav2vec2-base-finetuned-ks
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - marsyas/gtzan
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: wav2vec2-base-finetuned-ks-finetuned-gtzan
13
+ results:
14
+ - task:
15
+ name: Audio Classification
16
+ type: audio-classification
17
+ dataset:
18
+ name: GTZAN
19
+ type: marsyas/gtzan
20
+ config: all
21
+ split: train
22
+ args: all
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.84
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # wav2vec2-base-finetuned-ks-finetuned-gtzan
33
+
34
+ This model is a fine-tuned version of [addy88/wav2vec2-base-finetuned-ks](https://huggingface.co/addy88/wav2vec2-base-finetuned-ks) on the GTZAN dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.6898
37
+ - Accuracy: 0.84
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 4
58
+ - eval_batch_size: 4
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 2
61
+ - total_train_batch_size: 8
62
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 10
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
71
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
72
+ | 3.7432 | 1.0 | 113 | 1.8692 | 0.32 |
73
+ | 2.5892 | 2.0 | 226 | 1.3959 | 0.55 |
74
+ | 2.2446 | 3.0 | 339 | 1.1914 | 0.66 |
75
+ | 1.4697 | 4.0 | 452 | 1.1078 | 0.65 |
76
+ | 1.1533 | 5.0 | 565 | 0.9681 | 0.72 |
77
+ | 1.8984 | 6.0 | 678 | 0.8457 | 0.78 |
78
+ | 1.3302 | 7.0 | 791 | 0.9367 | 0.74 |
79
+ | 0.5157 | 8.0 | 904 | 0.7358 | 0.83 |
80
+ | 0.4856 | 9.0 | 1017 | 0.6366 | 0.83 |
81
+ | 0.859 | 9.9156 | 1120 | 0.6898 | 0.84 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.48.0.dev0
87
+ - Pytorch 2.5.1+cu121
88
+ - Datasets 3.2.0
89
+ - Tokenizers 0.21.0