--- library_name: transformers license: apache-2.0 base_model: addy88/wav2vec2-base-finetuned-ks tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # wav2vec2-base-finetuned-ks-finetuned-gtzan This model is a fine-tuned version of [addy88/wav2vec2-base-finetuned-ks](https://huggingface.co/addy88/wav2vec2-base-finetuned-ks) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6898 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 3.7432 | 1.0 | 113 | 1.8692 | 0.32 | | 2.5892 | 2.0 | 226 | 1.3959 | 0.55 | | 2.2446 | 3.0 | 339 | 1.1914 | 0.66 | | 1.4697 | 4.0 | 452 | 1.1078 | 0.65 | | 1.1533 | 5.0 | 565 | 0.9681 | 0.72 | | 1.8984 | 6.0 | 678 | 0.8457 | 0.78 | | 1.3302 | 7.0 | 791 | 0.9367 | 0.74 | | 0.5157 | 8.0 | 904 | 0.7358 | 0.83 | | 0.4856 | 9.0 | 1017 | 0.6366 | 0.83 | | 0.859 | 9.9156 | 1120 | 0.6898 | 0.84 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0