File size: 2,289 Bytes
e614eff
e9ea7aa
 
e614eff
 
 
 
 
 
 
 
 
 
e9ea7aa
 
 
 
 
 
 
 
 
 
 
 
 
 
e614eff
 
 
 
 
 
 
e9ea7aa
e614eff
e9ea7aa
 
 
 
 
e614eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755bf8e
 
 
 
 
e614eff
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
language:
- id
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
datasets:
- id_liputan6
metrics:
- rouge
model-index:
- name: liputan6-unipelt
  results:
  - task:
      name: Summarization
      type: summarization
    dataset:
      name: id_liputan6 canonical
      type: id_liputan6
      config: canonical
      split: validation
      args: canonical
    metrics:
    - name: Rouge1
      type: rouge
      value: 1.8031
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# liputan6-unipelt

This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the id_liputan6 canonical dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5645
- Rouge1: 1.8031
- Rouge2: 0.4028
- Rougel: 1.5585
- Rougelsum: 1.6132
- Gen Len: 127.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 3.9747        | 1.0   | 63   | 3.1043          | 3.9543 | 1.0191 | 3.7375 | 3.7922    | 127.0   |
| 3.0262        | 2.0   | 126  | 2.7314          | 5.0276 | 1.3105 | 4.1292 | 4.3574    | 127.0   |
| 2.6214        | 3.0   | 189  | 2.5645          | 5.2587 | 1.2673 | 3.8487 | 4.3728    | 127.0   |
| 2.3496        | 4.0   | 252  | 2.4158          | 4.4309 | 0.9142 | 3.2152 | 3.5296    | 127.0   |
| 2.1749        | 5.0   | 315  | 2.3672          | 5.0669 | 1.0704 | 3.6335 | 4.1011    | 127.0   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1