--- library_name: transformers base_model: danasone/bart-small-ru-en tags: - generated_from_trainer metrics: - bleu model-index: - name: bart_hin_eng_mt results: [] --- # bart_hin_eng_mt This model is a fine-tuned version of [danasone/bart-small-ru-en](https://huggingface.co/danasone/bart-small-ru-en) on [cfilt/iitb-english-hindi](https://huggingface.co/datasets/cfilt/iitb-english-hindi) dataset. It achieves the following results on the evaluation set: - Loss: 1.9000 - Bleu: 12.0235 - Gen Len: 33.4107 ## Model description Machine Translation model from Hindi to English on bart small model. ## Inference and evaluation ```python import torch import evaluate from transformers import AutoTokenizer, AutoModelForSeq2SeqLM class BartSmall(): def __init__(self, model_path = 'ar5entum/bart_hin_eng_mt', device = None): self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path) if not device: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.device = device self.model.to(device) def predict(self, input_text): inputs = self.tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True).to(self.device) pred_ids = self.model.generate(inputs.input_ids, max_length=512, num_beams=4, early_stopping=True) prediction = self.tokenizer.decode(pred_ids[0], skip_special_tokens=True) return prediction def predict_batch(self, input_texts, batch_size=32): all_predictions = [] for i in range(0, len(input_texts), batch_size): batch_texts = input_texts[i:i+batch_size] inputs = self.tokenizer(batch_texts, return_tensors="pt", max_length=512, truncation=True, padding=True).to(self.device) with torch.no_grad(): pred_ids = self.model.generate(inputs.input_ids, max_length=512, num_beams=4, early_stopping=True) predictions = self.tokenizer.batch_decode(pred_ids, skip_special_tokens=True) all_predictions.extend(predictions) return all_predictions model = BartSmall(device='cuda') input_texts = [ "यह शोध्य रकम है।", "जानने के लिए देखें ये वीडियो.", "वह दो बेटियों व एक बेटे का पिता था।" ] ground_truths = [ "This is a repayable amount.", "Watch this video to find out.", "He was a father of two daughters and a son." ] import time start = time.time() predictions = model.predict_batch(input_texts, batch_size=len(input_texts)) end = time.time() print("TIME: ", end-start) for i in range(len(input_texts)): print("‾‾‾‾‾‾‾‾‾‾‾‾") print("Input text:\t", input_texts[i]) print("Prediction:\t", predictions[i]) print("Ground Truth:\t", ground_truths[i]) bleu = evaluate.load("bleu") results = bleu.compute(predictions=predictions, references=ground_truths) print(results) # TIME: 1.2374696731567383 # ‾‾‾‾‾‾‾‾‾‾‾‾ # Input text: यह शोध्य रकम है। # Prediction: This is a repayable amount. # Ground Truth: This is a repayable amount. # ‾‾‾‾‾‾‾‾‾‾‾‾ # Input text: जानने के लिए देखें ये वीडियो. # Prediction: View these videos to know. # Ground Truth: Watch this video to find out. # ‾‾‾‾‾‾‾‾‾‾‾‾ # Input text: वह दो बेटियों व एक बेटे का पिता था। # Prediction: He was a father of two daughters and a son. # Ground Truth: He was a father of two daughters and a son. # {'bleu': 0.747875245486914, 'precisions': [0.8260869565217391, 0.75, 0.7647058823529411, 0.7857142857142857], 'brevity_penalty': 0.9574533680683809, 'length_ratio': 0.9583333333333334, 'translation_length': 23, 'reference_length': 24} ``` ## Training Procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 100 - eval_batch_size: 40 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 200 - total_eval_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:| | 2.6298 | 1.0 | 8265 | 2.6192 | 4.5435 | 39.8786 | | 2.2656 | 2.0 | 16530 | 2.2836 | 8.2498 | 35.8339 | | 2.0625 | 3.0 | 24795 | 2.1747 | 9.9182 | 35.5214 | | 1.974 | 4.0 | 33060 | 2.0760 | 10.1515 | 33.9732 | | 1.925 | 5.0 | 41325 | 2.0285 | 10.7702 | 34.175 | | 1.8076 | 6.0 | 49590 | 1.9860 | 11.4286 | 34.8875 | | 1.7817 | 7.0 | 57855 | 1.9664 | 11.4579 | 32.6411 | | 1.7025 | 8.0 | 66120 | 1.9561 | 11.9226 | 33.5179 | | 1.6691 | 9.0 | 74385 | 1.9354 | 11.7352 | 33.2161 | | 1.6631 | 10.0 | 82650 | 1.9231 | 11.9303 | 32.7679 | | 1.6317 | 11.0 | 90915 | 1.9264 | 11.5889 | 32.625 | | 1.6449 | 12.0 | 99180 | 1.9047 | 11.8451 | 33.8554 | | 1.6165 | 13.0 | 107445 | 1.9040 | 12.0755 | 32.7661 | | 1.5826 | 14.0 | 115710 | 1.9000 | 12.3137 | 33.3536 | | 1.5835 | 15.0 | 123975 | 1.9000 | 12.0235 | 33.4107 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1