File size: 7,439 Bytes
205ac95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a3440
205ac95
 
 
 
 
 
 
 
 
 
561d2d5
205ac95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0a88ef
205ac95
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
library_name: transformers
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-mul-en
tags:
- generated_from_trainer
- transliteration
metrics:
- bleu
model-index:
- name: marianMT_bi_dev_rom_tl
  results: []
language:
- hi
- en
datasets:
- ar5entum/hindi-english-roman-devnagiri-transliteration-corpus
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# marianMT_hin_eng_cs

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-hi-en](https://huggingface.co/Helsinki-NLP/opus-mt-hi-en) on [ar5entum/hindi-english-roman-devnagiri-transliteration-corpus](https://huggingface.co/datasets/ar5entum/hindi-english-roman-devnagiri-transliteration-corpus) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0947
- Bleu: 73.5282
- Gen Len: 40.8725

## Model description

The model is specifically designed to transliterate Devnagiri and Roman text both ways trained on both English and Hindi in Devnagiri and Roman scripts. 

```python
from transformers import MarianMTModel, MarianTokenizer
import evaluate

class Transliterate:
    def __init__(self, model_name='ar5entum/marianMT_bi_dev_rom_tl'):
        self.model_name = model_name
        self.tokenizer = MarianTokenizer.from_pretrained(model_name)
        self.model = MarianMTModel.from_pretrained(model_name)

    def predict(self, input_text):
        tokenized_text = self.tokenizer(input_text, return_tensors='pt')
        translated = self.model.generate(**tokenized_text)
        translated_text = self.tokenizer.decode(translated[0], skip_special_tokens=True)
        return translated_text
model = Transliterate()

devnagiri = [
    "यह अभिषेक जल, इक्षुरस, दुध, चावल का आटा, लाल चंदन, हल्दी, अष्टगंध, चंदन चुरा, चार कलश, केसर वृष्टि, आरती, सुगंधित कलश, महाशांतिधारा एवं महाअर्घ्य के साथ भगवान नेमिनाथ को समर्पित किया जाता है।",
    "कुछ ने कहा ये चांद है कुछ ने कहा चेहरा तेरा"
    ]
roman = [
    "yah abhishek jal, ikshuras, dudh, chaval ka ataa, laal chandan, haldi, ashtagandh, chandan chura, char kalash, kesar vrishti, aarti, sugandhit kalash, mahashantidhara evam mahaarghya ke saath bhagvan Neminath ko samarpit kiya jata hai.",
    "kuch ne kaha ye chand hai kuch ne kaha chehra ter"
    ]

import time
start = time.time()

predictions = [model.predict('[dev] ' + d) for d in devnagiri]
end = time.time()
print("TIME: ", end-start)
for i in range(len(devnagiri)):
    print("‾‾‾‾‾‾‾‾‾‾‾‾")
    print("Input text:\t", devnagiri[i])
    print("Prediction:\t", predictions[i])
    print("Ground Truth:\t", roman[i])
bleu = evaluate.load("bleu")
results = bleu.compute(predictions=predictions, references=roman)
print(results)
predictions = [model.predict('[rom] ' + d) for d in roman]
end = time.time()
print("TIME: ", end-start)
for i in range(len(roman)):
    print("‾‾‾‾‾‾‾‾‾‾‾‾")
    print("Input text:\t", roman[i])
    print("Prediction:\t", predictions[i])
    print("Ground Truth:\t", devnagiri[i])
bleu = evaluate.load("bleu")
results = bleu.compute(predictions=predictions, references=devnagiri)
print(results)

# TIME:  1.8382132053375244
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text:	 यह अभिषेक जल, इक्षुरस, दुध, चावल का आटा, लाल चंदन, हल्दी, अष्टगंध, चंदन चुरा, चार कलश, केसर वृष्टि, आरती, सुगंधित कलश, महाशांतिधारा एवं महाअर्घ्य के साथ भगवान नेमिनाथ को समर्पित किया जाता है।
# Prediction:	 yah abhishek jal, ikshuras, dudh, chaval ka ataa, laal chandan, haldi, ashtagandh, chandan chura, char kalash, kesar vrishti, aarti, sugandhit kalash, mahashantidhara evam mahaarghya ke saath bhagvan Neminath ko samarpit kiya jata hai.
# Ground Truth:	 yah abhishek jal, ikshuras, dudh, chaval ka ataa, laal chandan, haldi, ashtagandh, chandan chura, char kalash, kesar vrishti, aarti, sugandhit kalash, mahashantidhara evam mahaarghya ke saath bhagvan Neminath ko samarpit kiya jata hai.
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text:	 कुछ ने कहा ये चांद है कुछ ने कहा चेहरा तेरा
# Prediction:	 uchh ne kaha ye chand hai kuch ne kaha chehra tera
# Ground Truth:	 kuch ne kaha ye chand hai kuch ne kaha chehra ter
# {'bleu': 0.9628980475343849, 'precisions': [0.9649122807017544, 0.9636363636363636, 0.9622641509433962, 0.9607843137254902], 'brevity_penalty': 1.0, 'length_ratio': 1.0, 'translation_length': 57, 'reference_length': 57}


# TIME:  5.650054216384888
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text:	 yah abhishek jal, ikshuras, dudh, chaval ka ataa, laal chandan, haldi, ashtagandh, chandan chura, char kalash, kesar vrishti, aarti, sugandhit kalash, mahashantidhara evam mahaarghya ke saath bhagvan Neminath ko samarpit kiya jata hai.
# Prediction:	 यह अभिषेक जल, इक्षुरस, दुध, चावल का आता, लाल चंदन, हल्दी, अष्टगंध, चंदन चुरा, चार कलश, केसर व्टि, आरती, सुगंधित कलश, महाशांतारा
# Ground Truth:	 यह अभिषेक जल, इक्षुरस, दुध, चावल का आटा, लाल चंदन, हल्दी, अष्टगंध, चंदन चुरा, चार कलश, केसर वृष्टि, आरती, सुगंधित कलश, महाशांतिधारा एवं महाअर्घ्य के साथ भगवान नेमिनाथ को समर्पित किया जाता है।
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text:	 kuch ne kaha ye chand hai kuch ne kaha chehra ter
# Prediction:	 कुछ ने कहा ये चाँद है कुछ ने कहा चेहरा तेर
# Ground Truth:	 कुछ ने कहा ये चांद है कुछ ने कहा चेहरा तेरा
# {'bleu': 0.5977286781346162, 'precisions': [0.8888888888888888, 0.813953488372093, 0.7317073170731707, 0.6410256410256411], 'brevity_penalty': 0.7831394949065555, 'length_ratio': 0.8035714285714286, 'translation_length': 45, 'reference_length': 56}

```

## Training Procedure
### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 60
- eval_batch_size: 20
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 120
- total_eval_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 18.0

### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1