First commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-BipedalWalker-v3.zip +3 -0
- tqc-BipedalWalker-v3/_stable_baselines3_version +1 -0
- tqc-BipedalWalker-v3/actor.optimizer.pth +3 -0
- tqc-BipedalWalker-v3/critic.optimizer.pth +3 -0
- tqc-BipedalWalker-v3/data +121 -0
- tqc-BipedalWalker-v3/ent_coef_optimizer.pth +3 -0
- tqc-BipedalWalker-v3/policy.pth +3 -0
- tqc-BipedalWalker-v3/pytorch_variables.pth +3 -0
- tqc-BipedalWalker-v3/system_info.txt +7 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 332.83 +/- 0.42
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: BipedalWalker-v3
|
20 |
+
type: BipedalWalker-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TQC** Agent playing **BipedalWalker-v3**
|
24 |
+
This is a trained model of a **TQC** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=", "__module__": "sb3_contrib.tqc.policies", "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function TQCPolicy.__init__ at 0x7f2200afd950>", "_build": "<function TQCPolicy._build at 0x7f2200afd9e0>", "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f2200afda70>", "reset_noise": "<function TQCPolicy.reset_noise at 0x7f2200afdb00>", "make_actor": "<function TQCPolicy.make_actor at 0x7f2200afdb90>", "make_critic": "<function TQCPolicy.make_critic at 0x7f2200afdc20>", "forward": "<function TQCPolicy.forward at 0x7f2200afdcb0>", "_predict": "<function TQCPolicy._predict at 0x7f2200afdd40>", "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f2200afddd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2200afb270>"}, "verbose": 1, "policy_kwargs": {"log_std_init": -3, "net_arch": [400, 300], "use_sde": true}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV/gsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAUGQfJGmkiRhDtzAxyvwLhwKe9oM0vOvg/KaetlDVs2p5at0lTF7jkdn6LkQEOEyYIH2xr6CEir7MFTR0UUe7oKAYQHiY/BvRiS7I9/p4WP6nN2SdZemIyO73D8/FEMXOn2xU0wGyFqcTpkBLZZjcYQgjLGd/F7DeyOXw8XCq4CJyjGesIcDOGCzXiGWnLswgF4e44mqGBl46frP3s27QNawcknKFIvug+CNT/hXGKNqaqS/NbX0iOwOuOEWDn9aM0CZUeYLyqJOeWS003RvQ6HlRYdnDViuE+CR2t/FjryEcW5GTl/CAngenHczBscXzzMghra/j7XurLQshTEydMzuI11LjNSgiDET3P5AiRkFIXXRKaRN2AsFOmzuApl3kkwlS7Y5qe9VvDX44y9oHhPC8biU3XRdWOquXKhi8JWQyxTjmz8H6AgPEqgA4n4inR4xzJsinhc5b290wzUuZjXmq5kHLcMAz1ZSnxS7CYkh19NaVHDc9JSSvWi8zGuf6rbUeaZCIrSvhhn2UnU8JYwQjLntnqP9MkgB4t7O3ynpfEf+bTfo9n8g6sUujV28Co2nqWTiOUMBpeoQIxDeneb7lzEBKnuBcvDqvcDjIYsUk0NbiV2NbQEHtp696l+ZLxGAr3ovFfzZhItZ4JLkR8c9YMwti3iWQlSYiW3g5ybKbCZIQZt2PNpRqNWqgm0QDwyr5T733umRpgw3JqjsNSTs1TivASIzq4LUruQc1Gllw4g1hdWcuhhXK65iUAJAZRf6hR4c1g3C949moI7ZUCk4Tgf6VbolIH5u7SfcCAzcUtUiRFkJmOK+tZFcGaUS8h4VO9l+L4LxaldHd5fucNgFoWkQZQG0ngobTTze2wm0u0njNKB2tMzxiN5npwaiKWfElkomm4+4mmVnechAnQU/jMOUtaDwRn2YSONxgLK4YHrMIU3VbBrpyu/MoH8boXA3nCAWGLNgnfv5K4iz0XX1UhQmXqgMKgn0PWoWyuPub3JUHHHwei7RhS2dCEqstKWw6NkaBQS/YiJ7x8O7NZ9dCN7t6Isx5dU84lFGdq+2PWyMRoQwD7k+741AZn7cvojPPxWOUgzgObaefAO/MVxHouPONw0DWzjAm3pCl1rdG8VzDuksbUaDtMyVJaJBLPFNbf8yykyKI+dHALsq9oXJrdUVVBTyAIvftD4bln5IHsb8BStQoHqxRbFAjcoWayF7fbfZqqq46H5sXSYHTE9EB4PWMTgBGAnvWP+5wLkripGyLSDsrCS/krWtlL8g7Og3JhCGCU6uDk22CBQVP7nA4PMBbM/iMj2AsmjF2gEUA/1JK9KcERwW948K2slnekTen7JFrWbSapOi3xpaqBZCTjok2RxAFWFm25F7N8oTzgZp5ZAL5TmBTGvgh2Ew80INYKoDVWtGa5S3cNfL+idzm0EkvsH1a34Aiy/u0s5hQ3UFNBx8dSEnE6zeDoWHP76LNqHLoQ1tcgUc/lSMuEzcbmsbgL1l2jEppWVLVAZOSOk57rheZDTdcvpAxE23WV00UyVu+tJ4eCpCoRr68JS8I9+HUAheB46+PBkTc2hp+PIBTKtaRccq7KmhOowjjS4p/x56OX/aXkOL5HykCuFYHzRWPpMVwUw7cWWidggie5ywBNyHAtGhiDLBIorNieDLf3u1mNux4RhhqNIhLliisB1yINQY4IGKFNIV2EazAKMzSakVMum64Cr8XfS0OQD8Sy/arHpUtlDehJYGeooc41OGk2ipTfmwozleFlqy0xkwYwL68FWn5Wnxe3xfNC6cJgUkmI9eXotMuBNd1WOzsGSvcQXA3FCH+e/TMe60AaJa3LkqHc2mlfRj+ZLxEzUaHxY+/Xsj+ExI9iOcNTuZHJ1DmYKFzUIgGTqwJEIaFrZNwpP8hmm6IP+QHnQAsNUYzy5CpK1rhwrhCWQHYwW22yHUDhxtc4MgiBUqY4UWDeO0Yi+xT60A1ZWFZ5BkcbCmQntkUvwpmBYELVJHqS08tqlJs4emoVd6nJZis5VaDsth1402V6STU4RY3h17XjC7Pew5Rud1ne9kSUFJ9Cybbyvnpm0gbsh9ktRIGBEKchko5c1ZdeSJ2+PCixn5tLWj9P4hFw242nXevhBWWRjUZGfW1dL5EVQwSNZqliRr3Wjc0/169XKguBPGOn0NA57WXAKkEilOcuFxBI4njeC2yURdz6Xoaxz2A55h0cd0Q12icb6Vp6m3PvHkbl7SVIYVFH5Q5gurud0kxQbLO4WCjF/TRB6MGp2nZcotp4bV++wRw2iklvcFU5j9NneIQQRXjJKh5ndwWoZ1UNtLq4e2VLTrvEIyOq1ZG2ZT8WbExRnHSVwLNliBiZfjCjNB6XuVLiCZAQz2UuQrabM0E1OLnlws9LvczIlOo7Nu4v66bh3MjJQ1hAgs2EkXOf50uVaEYw+h4teX2sKB65ld80mST2bb30M1D53sapXWNQKOHXbFKl7WvaCm3jnJc9RE11uWPKdy0PSfg7RKETc74zNohelGWeUsuib6hFVHkWueWMezhpae8jTViI4yJWblttoFPN5lsuVmMDYuQEeKQfFRQiZ0smj2XlK5Vt4DtDLudNHsg7cFDB5YSaWjSCzeTDjxfHqSHZjX6S+vjaYewId4etqPArSqyVd7HlwZ4/p3bmYfsxx4hOez2DEuYhXBm4IEuVg+UH5SW31u0UwS14Kn0yu2+jviU5qEEKkcLQ6hwro5K12nDMDlFWJ1q2VBr7TFV/p3asnSxmcbvh+0X21AH6PsrqyqpJs1ghgEaeCMAFuMVntmOrzXtqIYflMwzqoxq/iNQSYN0TIqn0GAjpvM6dUUpS9sg4sonyo4mEbIuOCQfKhbq1ysqsEV6yeLv9Sg3DxVZB99laCFYodH+m+iYZJW5SoG3LojcEhJ74KHlE03MUPMNp+h6tGAIdPyb0MdIOrNDqVgCMh+EfPeXsv3iZPG0+F08b8pE8T3DpH051Seyy2EG8UcY+rMnnXgrwh5dDcDQzDztycQrn6J+6jXGyKggvURA02I9OsnPer8cKGeqWe6nZthoA9h878eYjHgkiLXF3CPB8jHtIlC0FiEEBuUsYyUv7z/M2GYtZLdvTi+7+j35UqUPClIu4l82awFb+cpGZuvJXf/m8qmjfWvpWoY5ofwr5SLUXFiRgAi3tJINbSHxBgYk9OWJlt4JAsTNuJwqJV+0X9HJq6MsZUapWIT+JPhazrRWOWkfX8AfUd/9Uox4Uft5aEf13P5jDvchfObHwyRnAczwUbw+cQu5j2ziqOHvKt8yYGkQkCPbu/CM3TOMKFs0/64F2vJtlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUS4B1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 2, "num_timesteps": 600000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652550056.2211874, "learning_rate": 0.00073, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAAAAAAAAAMOkt7x6vwq8/WdxPy/KMjymmVw/AQCAv4DhvrwF6T8+AACAP2zThT4BAIA/CPTgvmdmjj4AAAAAVrrXPhE91z6TC9w+qajoPibg/D4ddA0/Z9AmP1NQWT8AAIA/AACAP+I7RD2a/jK8n9iYPh81yzxX9I0/AABgs+AIoDwBAIC/AAAAAIZRw74TP3w/AC9NPgEAgL8AAAAAR3LIPge5yj5O0dE+j5vePtbd8j6k+Qg/TTshP8ZsST8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAksYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAAAAAAAAAPczlrw7wgy8/9tvP/8ttTytH3I/AQCAv8B+dTygVKo9AAAAADt3PD4AAIA/FGH1vvyJGr8AAAAAm+DYPsJZ2D4VCN0+o2boPl8x/T74pQ0/1homP5YUWT8AAIA/AACAP5ewWj0gClA8aPuePt/OAz0qbY4/AAAAAEgXCT77/3+/AAAAAPUw677mFKk+XHaiPgAAgL8AAAAAbt/HPoMkyj6XN9E+efjdPuor8j5LlQg/L8UgPzbZSD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAksYhpSMAUOUdJRSlC4="}, "_episode_num": 1041, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.40000199999999997, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkSkfgqpmW0CUhpRSlIwBbJRNoAGMAXSUR0Cr0jOtGNJfdX2UKGgGaAloD0MI0ETY8PSrYECUhpRSlGgVTc4BaBZHQKvd+EW69TR1fZQoaAZoCWgPQwgmxFxSdbB0QJSGlFKUaBVNWAJoFkdAq+Arch1TznV9lChoBmgJaA9DCPPGSWGeuHRAlIaUUpRoFU1bAmgWR0Cr7O8c+7lJdX2UKGgGaAloD0MIRdYaSu28dECUhpRSlGgVTVQCaBZHQKvvOG5+Ytx1fZQoaAZoCWgPQwjGv8+48Dp0QJSGlFKUaBVNWAJoFkdAq/u/vfCQ93V9lChoBmgJaA9DCIT0FDkEqHRAlIaUUpRoFU1WAmgWR0Cr/bfRVp9JdX2UKGgGaAloD0MIwlCHFa65dECUhpRSlGgVTVQCaBZHQKwKJt3OfNB1fZQoaAZoCWgPQwhuwVJdQJp0QJSGlFKUaBVNXAJoFkdArAwhJAdGRXV9lChoBmgJaA9DCHMQdLSqvXRAlIaUUpRoFU1TAmgWR0CsF6CNS619dX2UKGgGaAloD0MIvHoVGd2/dECUhpRSlGgVTVUCaBZHQKwZwXmeUY91fZQoaAZoCWgPQwiOzY5Un7h0QJSGlFKUaBVNUgJoFkdArCTZw84ginV9lChoBmgJaA9DCElIpG38sHRAlIaUUpRoFU1VAmgWR0CsJyyRKYiQdX2UKGgGaAloD0MIniPyXcq3dECUhpRSlGgVTVUCaBZHQKwy6YZ2pyZ1fZQoaAZoCWgPQwgXvOgrSMN0QJSGlFKUaBVNVgJoFkdArDVSTyJ9A3V9lChoBmgJaA9DCPUu3o+bpHRAlIaUUpRoFU1YAmgWR0CsQYCXQdCFdX2UKGgGaAloD0MISUp6GNq1dECUhpRSlGgVTVICaBZHQKxDZ4fOlft1fZQoaAZoCWgPQwhy/FBphKx0QJSGlFKUaBVNWgJoFkdArFAS1G9YfXV9lChoBmgJaA9DCI2bGmh+qHRAlIaUUpRoFU1UAmgWR0CsUjtO/L1VdX2UKGgGaAloD0MIebEwRA60dECUhpRSlGgVTU8CaBZHQKxfHP2wmmd1fZQoaAZoCWgPQwjnjv6XK650QJSGlFKUaBVNWwJoFkdArGGKj+Jgs3V9lChoBmgJaA9DCEQUkzfAzPg/lIaUUpRoFU0IAWgWR0CsaAX05EMLdX2UKGgGaAloD0MInYGRl7WrdECUhpRSlGgVTVkCaBZHQKxuOJQcghd1fZQoaAZoCWgPQwiXHeIfNrh0QJSGlFKUaBVNUwJoFkdArHdKMR6F/XV9lChoBmgJaA9DCJyLv+1JtHRAlIaUUpRoFU1RAmgWR0CsfSWEbo8qdX2UKGgGaAloD0MIKSUEq6rCdECUhpRSlGgVTU8CaBZHQKyF78ohIOJ1fZQoaAZoCWgPQwjul09WjMl0QJSGlFKUaBVNUwJoFkdArIvM0aZQYXV9lChoBmgJaA9DCFdAoZ5+wXRAlIaUUpRoFU1LAmgWR0CslEn0K7ZndX2UKGgGaAloD0MIWWq932iudECUhpRSlGgVTVgCaBZHQKyam2AoXsR1fZQoaAZoCWgPQwgFhxdEZLp0QJSGlFKUaBVNVgJoFkdArKLndCVrynV9lChoBmgJaA9DCNNnB1yXrnRAlIaUUpRoFU1YAmgWR0CsqY9zGPxQdX2UKGgGaAloD0MIqDRiZp+wdECUhpRSlGgVTVACaBZHQKyxyuSwGGF1fZQoaAZoCWgPQwiale1DHq50QJSGlFKUaBVNUwJoFkdArLiLJuEVWXV9lChoBmgJaA9DCCjxuROsnnRAlIaUUpRoFU1bAmgWR0CswTjpLVWkdX2UKGgGaAloD0MIQFHZsOacdECUhpRSlGgVTVACaBZHQKzHdfF72L51fZQoaAZoCWgPQwhihsYTQYw4wJSGlFKUaBVLyWgWR0CszFUH6dlNdX2UKGgGaAloD0MIh+EjYoq3dECUhpRSlGgVTVoCaBZHQKzP4SyMUAV1fZQoaAZoCWgPQwjcLckBu61SQJSGlFKUaBVNZQFoFkdArNSP4CZF5XV9lChoBmgJaA9DCMI1d/Q/s3RAlIaUUpRoFU1TAmgWR0Cs3fxU3n6mdX2UKGgGaAloD0MIbw1sleC3dECUhpRSlGgVTU8CaBZHQKzi1bOeJ551fZQoaAZoCWgPQwiQ2O4eILp0QJSGlFKUaBVNTwJoFkdArOwhZ6lchXV9lChoBmgJaA9DCOIDO/5LtnRAlIaUUpRoFU1VAmgWR0Cs8S4YaYNRdX2UKGgGaAloD0MIqaCi6le1dECUhpRSlGgVTVQCaBZHQKz6rPXTVlR1fZQoaAZoCWgPQwhb6bXZ2MJ0QJSGlFKUaBVNVQJoFkdArP+iZc9nsnV9lChoBmgJaA9DCB9KtOTxvHRAlIaUUpRoFU1MAmgWR0CtCL6Xrt3OdX2UKGgGaAloD0MI7j7HRwu7dECUhpRSlGgVTVMCaBZHQK0OJtfG+9J1fZQoaAZoCWgPQwgcJa/OMbh0QJSGlFKUaBVNXwJoFkdArRe8/OdGzHV9lChoBmgJaA9DCBy0Vx+PsnRAlIaUUpRoFU1YAmgWR0CtHJd5yEL6dX2UKGgGaAloD0MIcQM+Pwy1dECUhpRSlGgVTVUCaBZHQK0mY4+bExZ1fZQoaAZoCWgPQwhZT62++rh0QJSGlFKUaBVNWQJoFkdArSu/7rLQonV9lChoBmgJaA9DCBx4tdxZvXRAlIaUUpRoFU1XAmgWR0CtNLo5xR2sdX2UKGgGaAloD0MIdEaU9gawdECUhpRSlGgVTVICaBZHQK0569OARTV1fZQoaAZoCWgPQwjd66S+7LB0QJSGlFKUaBVNUwJoFkdArUOUa/ATI3V9lChoBmgJaA9DCNL+B1hrsHRAlIaUUpRoFU1UAmgWR0CtSHW7e2uxdX2UKGgGaAloD0MIZan1fiOxdECUhpRSlGgVTVUCaBZHQK1Qr2g39751fZQoaAZoCWgPQwheaK7TSJ50QJSGlFKUaBVNZAJoFkdArVV9tl7MPnV9lChoBmgJaA9DCHR63o2FwXRAlIaUUpRoFU1PAmgWR0CtXX/BWPtEdX2UKGgGaAloD0MI6x7ZXLWydECUhpRSlGgVTVUCaBZHQK1id3Cbc451fZQoaAZoCWgPQwgnZr0YyqkGQJSGlFKUaBVNCAFoFkdArWkOMVDa5HV9lChoBmgJaA9DCK1M+KV+uXRAlIaUUpRoFU1RAmgWR0Cta7eT3Zf2dX2UKGgGaAloD0MIqIx/n/G+dECUhpRSlGgVTUwCaBZHQK13/j3mFJx1fZQoaAZoCWgPQwgcXaW767p0QJSGlFKUaBVNVAJoFkdArXqYsRQJonV9lChoBmgJaA9DCG2rWWd8sHRAlIaUUpRoFU1bAmgWR0CthtsDnvDxdX2UKGgGaAloD0MIRfXWwFa+dECUhpRSlGgVTUwCaBZHQK2JNgKnei11fZQoaAZoCWgPQwhOmgZF83hbwJSGlFKUaBVLXWgWR0Cti3XJYDDCdX2UKGgGaAloD0MI56bNOM2xdECUhpRSlGgVTVQCaBZHQK2V8GIKtxN1fZQoaAZoCWgPQwhgHccP1bJ0QJSGlFKUaBVNVQJoFkdArZo3mPo3aXV9lChoBmgJaA9DCHgLJCg+u3RAlIaUUpRoFU1UAmgWR0CtpGnhsImgdX2UKGgGaAloD0MI4jlbQKi5dECUhpRSlGgVTU8CaBZHQK2oqV58jRl1fZQoaAZoCWgPQwjkh0ojpo90QJSGlFKUaBVNfwJoFkdArbJSU5dWyXV9lChoBmgJaA9DCORME7bfpnRAlIaUUpRoFU1UAmgWR0Cttbe36Q/5dX2UKGgGaAloD0MIa4DSUGO7dECUhpRSlGgVTVECaBZHQK3Al5rxiG51fZQoaAZoCWgPQwg2PSgoxbR0QJSGlFKUaBVNUQJoFkdArcN0utfXw3V9lChoBmgJaA9DCKbW+422tHRAlIaUUpRoFU1XAmgWR0CtzlQeNkvsdX2UKGgGaAloD0MICanb2Ze8dECUhpRSlGgVTVECaBZHQK3Rqw/PgNx1fZQoaAZoCWgPQwiOI9biE710QJSGlFKUaBVNUgJoFkdArdxgPVd5ZHV9lChoBmgJaA9DCM+goX/CtnRAlIaUUpRoFU1TAmgWR0Ct33GBWgezdX2UKGgGaAloD0MItf0rK03GdECUhpRSlGgVTVICaBZHQK3qunVG0/p1fZQoaAZoCWgPQwgEkUWaOJ10QJSGlFKUaBVNXQJoFkdAre4sUAT7EnV9lChoBmgJaA9DCE8eFmrNsXRAlIaUUpRoFU1OAmgWR0Ct+NESM98rdX2UKGgGaAloD0MIs33IWy7EdECUhpRSlGgVTVMCaBZHQK38jAVwgkl1fZQoaAZoCWgPQwg41zBDo7J0QJSGlFKUaBVNSwJoFkdArgdCbF0gbXV9lChoBmgJaA9DCC9QUmABmHRAlIaUUpRoFU1gAmgWR0CuCw2iL2pRdX2UKGgGaAloD0MIDwnf+1uvdECUhpRSlGgVTVcCaBZHQK4VNH0btJF1fZQoaAZoCWgPQwgl6C/0iMJ0QJSGlFKUaBVNSAJoFkdArhkW/Firk3V9lChoBmgJaA9DCBIykGdXu3RAlIaUUpRoFU1dAmgWR0CuI9oInjQzdX2UKGgGaAloD0MICp+tg4PAdECUhpRSlGgVTVQCaBZHQK4nZ+NtIkJ1fZQoaAZoCWgPQwgTDr3Fg710QJSGlFKUaBVNSwJoFkdArjK22JBPbnV9lChoBmgJaA9DCF9f61IjrXRAlIaUUpRoFU1VAmgWR0CuNptedCmedX2UKGgGaAloD0MIrb1PVeHJdECUhpRSlGgVTU4CaBZHQK4/0YZ2pyZ1fZQoaAZoCWgPQwhXIeUnVcJ0QJSGlFKUaBVNVgJoFkdArkPP779AHHV9lChoBmgJaA9DCF5MM91r3HRAlIaUUpRoFU1MAmgWR0CuTgQWN3nqdX2UKGgGaAloD0MIYB+duvKqdECUhpRSlGgVTWECaBZHQK5R8OWBz3h1fZQoaAZoCWgPQwgOaOkKNrN0QJSGlFKUaBVNVgJoFkdArlsdRHf/FXV9lChoBmgJaA9DCLgBnx8GqHRAlIaUUpRoFU1VAmgWR0CuX4DjzZpSdX2UKGgGaAloD0MIIlM+BNW3dECUhpRSlGgVTVACaBZHQK5pscSXdCV1fZQoaAZoCWgPQwi5quy74rR0QJSGlFKUaBVNWAJoFkdArm7aBZpztHV9lChoBmgJaA9DCI7MI38wv3RAlIaUUpRoFU1NAmgWR0CueKJpWV/udX2UKGgGaAloD0MI9IqnHinFdECUhpRSlGgVTU0CaBZHQK59cWTHKfZ1fZQoaAZoCWgPQwilFkomp7x0QJSGlFKUaBVNUgJoFkdAroa4buMMqnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 294992, "buffer_size": 300000, "batch_size": 256, "learning_starts": 10000, "tau": 0.02, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f220100bb00>", "add": "<function ReplayBuffer.add at 0x7f220100bb90>", "sample": "<function ReplayBuffer.sample at 0x7f2200b70710>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f2200b707a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2201042e10>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "top_quantiles_to_drop_per_net": 2, "system_info": {"OS": "Linux-5.13.0-41-generic-x86_64-with-debian-bullseye-sid #46~20.04.1-Ubuntu SMP Wed Apr 20 13:16:21 UTC 2022", "Python": "3.7.10", "Stable-Baselines3": "1.5.1a6", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7c8d2362c740f68387b87888d5cd9b1039f64762db61413980c9620c73b2c40
|
3 |
+
size 450795
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 332.8278253, "std_reward": 0.41812090169041827, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-14T20:48:35.477159"}
|
tqc-BipedalWalker-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be2f55de70af9ff7631d7b31e331d2a244144e9d0c2776764a13653f7b325411
|
3 |
+
size 6097669
|
tqc-BipedalWalker-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a6
|
tqc-BipedalWalker-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:757896911d7eaf37cb33ec7b063dd768a40452a08525cacf387307d9cfa7235d
|
3 |
+
size 1065467
|
tqc-BipedalWalker-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91e4162ed7758a91512e799d988b502e2e317ecd2e63bb91e763eea7dcf457b1
|
3 |
+
size 2237085
|
tqc-BipedalWalker-v3/data
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TQCPolicy.__init__ at 0x7f2200afd950>",
|
8 |
+
"_build": "<function TQCPolicy._build at 0x7f2200afd9e0>",
|
9 |
+
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f2200afda70>",
|
10 |
+
"reset_noise": "<function TQCPolicy.reset_noise at 0x7f2200afdb00>",
|
11 |
+
"make_actor": "<function TQCPolicy.make_actor at 0x7f2200afdb90>",
|
12 |
+
"make_critic": "<function TQCPolicy.make_critic at 0x7f2200afdc20>",
|
13 |
+
"forward": "<function TQCPolicy.forward at 0x7f2200afdcb0>",
|
14 |
+
"_predict": "<function TQCPolicy._predict at 0x7f2200afdd40>",
|
15 |
+
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f2200afddd0>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc_data object at 0x7f2200afb270>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"log_std_init": -3,
|
22 |
+
"net_arch": [
|
23 |
+
400,
|
24 |
+
300
|
25 |
+
],
|
26 |
+
"use_sde": true
|
27 |
+
},
|
28 |
+
"observation_space": {
|
29 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
30 |
+
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
31 |
+
"dtype": "float32",
|
32 |
+
"_shape": [
|
33 |
+
24
|
34 |
+
],
|
35 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
36 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
37 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
38 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
39 |
+
"_np_random": null
|
40 |
+
},
|
41 |
+
"action_space": {
|
42 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
43 |
+
":serialized:": "gAWV/gsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAUGQfJGmkiRhDtzAxyvwLhwKe9oM0vOvg/KaetlDVs2p5at0lTF7jkdn6LkQEOEyYIH2xr6CEir7MFTR0UUe7oKAYQHiY/BvRiS7I9/p4WP6nN2SdZemIyO73D8/FEMXOn2xU0wGyFqcTpkBLZZjcYQgjLGd/F7DeyOXw8XCq4CJyjGesIcDOGCzXiGWnLswgF4e44mqGBl46frP3s27QNawcknKFIvug+CNT/hXGKNqaqS/NbX0iOwOuOEWDn9aM0CZUeYLyqJOeWS003RvQ6HlRYdnDViuE+CR2t/FjryEcW5GTl/CAngenHczBscXzzMghra/j7XurLQshTEydMzuI11LjNSgiDET3P5AiRkFIXXRKaRN2AsFOmzuApl3kkwlS7Y5qe9VvDX44y9oHhPC8biU3XRdWOquXKhi8JWQyxTjmz8H6AgPEqgA4n4inR4xzJsinhc5b290wzUuZjXmq5kHLcMAz1ZSnxS7CYkh19NaVHDc9JSSvWi8zGuf6rbUeaZCIrSvhhn2UnU8JYwQjLntnqP9MkgB4t7O3ynpfEf+bTfo9n8g6sUujV28Co2nqWTiOUMBpeoQIxDeneb7lzEBKnuBcvDqvcDjIYsUk0NbiV2NbQEHtp696l+ZLxGAr3ovFfzZhItZ4JLkR8c9YMwti3iWQlSYiW3g5ybKbCZIQZt2PNpRqNWqgm0QDwyr5T733umRpgw3JqjsNSTs1TivASIzq4LUruQc1Gllw4g1hdWcuhhXK65iUAJAZRf6hR4c1g3C949moI7ZUCk4Tgf6VbolIH5u7SfcCAzcUtUiRFkJmOK+tZFcGaUS8h4VO9l+L4LxaldHd5fucNgFoWkQZQG0ngobTTze2wm0u0njNKB2tMzxiN5npwaiKWfElkomm4+4mmVnechAnQU/jMOUtaDwRn2YSONxgLK4YHrMIU3VbBrpyu/MoH8boXA3nCAWGLNgnfv5K4iz0XX1UhQmXqgMKgn0PWoWyuPub3JUHHHwei7RhS2dCEqstKWw6NkaBQS/YiJ7x8O7NZ9dCN7t6Isx5dU84lFGdq+2PWyMRoQwD7k+741AZn7cvojPPxWOUgzgObaefAO/MVxHouPONw0DWzjAm3pCl1rdG8VzDuksbUaDtMyVJaJBLPFNbf8yykyKI+dHALsq9oXJrdUVVBTyAIvftD4bln5IHsb8BStQoHqxRbFAjcoWayF7fbfZqqq46H5sXSYHTE9EB4PWMTgBGAnvWP+5wLkripGyLSDsrCS/krWtlL8g7Og3JhCGCU6uDk22CBQVP7nA4PMBbM/iMj2AsmjF2gEUA/1JK9KcERwW948K2slnekTen7JFrWbSapOi3xpaqBZCTjok2RxAFWFm25F7N8oTzgZp5ZAL5TmBTGvgh2Ew80INYKoDVWtGa5S3cNfL+idzm0EkvsH1a34Aiy/u0s5hQ3UFNBx8dSEnE6zeDoWHP76LNqHLoQ1tcgUc/lSMuEzcbmsbgL1l2jEppWVLVAZOSOk57rheZDTdcvpAxE23WV00UyVu+tJ4eCpCoRr68JS8I9+HUAheB46+PBkTc2hp+PIBTKtaRccq7KmhOowjjS4p/x56OX/aXkOL5HykCuFYHzRWPpMVwUw7cWWidggie5ywBNyHAtGhiDLBIorNieDLf3u1mNux4RhhqNIhLliisB1yINQY4IGKFNIV2EazAKMzSakVMum64Cr8XfS0OQD8Sy/arHpUtlDehJYGeooc41OGk2ipTfmwozleFlqy0xkwYwL68FWn5Wnxe3xfNC6cJgUkmI9eXotMuBNd1WOzsGSvcQXA3FCH+e/TMe60AaJa3LkqHc2mlfRj+ZLxEzUaHxY+/Xsj+ExI9iOcNTuZHJ1DmYKFzUIgGTqwJEIaFrZNwpP8hmm6IP+QHnQAsNUYzy5CpK1rhwrhCWQHYwW22yHUDhxtc4MgiBUqY4UWDeO0Yi+xT60A1ZWFZ5BkcbCmQntkUvwpmBYELVJHqS08tqlJs4emoVd6nJZis5VaDsth1402V6STU4RY3h17XjC7Pew5Rud1ne9kSUFJ9Cybbyvnpm0gbsh9ktRIGBEKchko5c1ZdeSJ2+PCixn5tLWj9P4hFw242nXevhBWWRjUZGfW1dL5EVQwSNZqliRr3Wjc0/169XKguBPGOn0NA57WXAKkEilOcuFxBI4njeC2yURdz6Xoaxz2A55h0cd0Q12icb6Vp6m3PvHkbl7SVIYVFH5Q5gurud0kxQbLO4WCjF/TRB6MGp2nZcotp4bV++wRw2iklvcFU5j9NneIQQRXjJKh5ndwWoZ1UNtLq4e2VLTrvEIyOq1ZG2ZT8WbExRnHSVwLNliBiZfjCjNB6XuVLiCZAQz2UuQrabM0E1OLnlws9LvczIlOo7Nu4v66bh3MjJQ1hAgs2EkXOf50uVaEYw+h4teX2sKB65ld80mST2bb30M1D53sapXWNQKOHXbFKl7WvaCm3jnJc9RE11uWPKdy0PSfg7RKETc74zNohelGWeUsuib6hFVHkWueWMezhpae8jTViI4yJWblttoFPN5lsuVmMDYuQEeKQfFRQiZ0smj2XlK5Vt4DtDLudNHsg7cFDB5YSaWjSCzeTDjxfHqSHZjX6S+vjaYewId4etqPArSqyVd7HlwZ4/p3bmYfsxx4hOez2DEuYhXBm4IEuVg+UH5SW31u0UwS14Kn0yu2+jviU5qEEKkcLQ6hwro5K12nDMDlFWJ1q2VBr7TFV/p3asnSxmcbvh+0X21AH6PsrqyqpJs1ghgEaeCMAFuMVntmOrzXtqIYflMwzqoxq/iNQSYN0TIqn0GAjpvM6dUUpS9sg4sonyo4mEbIuOCQfKhbq1ysqsEV6yeLv9Sg3DxVZB99laCFYodH+m+iYZJW5SoG3LojcEhJ74KHlE03MUPMNp+h6tGAIdPyb0MdIOrNDqVgCMh+EfPeXsv3iZPG0+F08b8pE8T3DpH051Seyy2EG8UcY+rMnnXgrwh5dDcDQzDztycQrn6J+6jXGyKggvURA02I9OsnPer8cKGeqWe6nZthoA9h878eYjHgkiLXF3CPB8jHtIlC0FiEEBuUsYyUv7z/M2GYtZLdvTi+7+j35UqUPClIu4l82awFb+cpGZuvJXf/m8qmjfWvpWoY5ofwr5SLUXFiRgAi3tJINbSHxBgYk9OWJlt4JAsTNuJwqJV+0X9HJq6MsZUapWIT+JPhazrRWOWkfX8AfUd/9Uox4Uft5aEf13P5jDvchfObHwyRnAczwUbw+cQu5j2ziqOHvKt8yYGkQkCPbu/CM3TOMKFs0/64F2vJtlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUS4B1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
44 |
+
"dtype": "float32",
|
45 |
+
"_shape": [
|
46 |
+
4
|
47 |
+
],
|
48 |
+
"low": "[-1. -1. -1. -1.]",
|
49 |
+
"high": "[1. 1. 1. 1.]",
|
50 |
+
"bounded_below": "[ True True True True]",
|
51 |
+
"bounded_above": "[ True True True True]",
|
52 |
+
"_np_random": "RandomState(MT19937)"
|
53 |
+
},
|
54 |
+
"n_envs": 2,
|
55 |
+
"num_timesteps": 600000,
|
56 |
+
"_total_timesteps": 1000000,
|
57 |
+
"_num_timesteps_at_start": 0,
|
58 |
+
"seed": null,
|
59 |
+
"action_noise": null,
|
60 |
+
"start_time": 1652550056.2211874,
|
61 |
+
"learning_rate": 0.00073,
|
62 |
+
"tensorboard_log": null,
|
63 |
+
"lr_schedule": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
66 |
+
},
|
67 |
+
"_last_obs": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVNQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAAAAAAAAAMOkt7x6vwq8/WdxPy/KMjymmVw/AQCAv4DhvrwF6T8+AACAP2zThT4BAIA/CPTgvmdmjj4AAAAAVrrXPhE91z6TC9w+qajoPibg/D4ddA0/Z9AmP1NQWT8AAIA/AACAP+I7RD2a/jK8n9iYPh81yzxX9I0/AABgs+AIoDwBAIC/AAAAAIZRw74TP3w/AC9NPgEAgL8AAAAAR3LIPge5yj5O0dE+j5vePtbd8j6k+Qg/TTshP8ZsST8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAksYhpSMAUOUdJRSlC4="
|
70 |
+
},
|
71 |
+
"_last_episode_starts": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
|
74 |
+
},
|
75 |
+
"_last_original_obs": {
|
76 |
+
":type:": "<class 'numpy.ndarray'>",
|
77 |
+
":serialized:": "gAWVNQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAAAAAAAAAPczlrw7wgy8/9tvP/8ttTytH3I/AQCAv8B+dTygVKo9AAAAADt3PD4AAIA/FGH1vvyJGr8AAAAAm+DYPsJZ2D4VCN0+o2boPl8x/T74pQ0/1homP5YUWT8AAIA/AACAP5ewWj0gClA8aPuePt/OAz0qbY4/AAAAAEgXCT77/3+/AAAAAPUw677mFKk+XHaiPgAAgL8AAAAAbt/HPoMkyj6XN9E+efjdPuor8j5LlQg/L8UgPzbZSD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAksYhpSMAUOUdJRSlC4="
|
78 |
+
},
|
79 |
+
"_episode_num": 1041,
|
80 |
+
"use_sde": true,
|
81 |
+
"sde_sample_freq": -1,
|
82 |
+
"_current_progress_remaining": 0.40000199999999997,
|
83 |
+
"ep_info_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkSkfgqpmW0CUhpRSlIwBbJRNoAGMAXSUR0Cr0jOtGNJfdX2UKGgGaAloD0MI0ETY8PSrYECUhpRSlGgVTc4BaBZHQKvd+EW69TR1fZQoaAZoCWgPQwgmxFxSdbB0QJSGlFKUaBVNWAJoFkdAq+Arch1TznV9lChoBmgJaA9DCPPGSWGeuHRAlIaUUpRoFU1bAmgWR0Cr7O8c+7lJdX2UKGgGaAloD0MIRdYaSu28dECUhpRSlGgVTVQCaBZHQKvvOG5+Ytx1fZQoaAZoCWgPQwjGv8+48Dp0QJSGlFKUaBVNWAJoFkdAq/u/vfCQ93V9lChoBmgJaA9DCIT0FDkEqHRAlIaUUpRoFU1WAmgWR0Cr/bfRVp9JdX2UKGgGaAloD0MIwlCHFa65dECUhpRSlGgVTVQCaBZHQKwKJt3OfNB1fZQoaAZoCWgPQwhuwVJdQJp0QJSGlFKUaBVNXAJoFkdArAwhJAdGRXV9lChoBmgJaA9DCHMQdLSqvXRAlIaUUpRoFU1TAmgWR0CsF6CNS619dX2UKGgGaAloD0MIvHoVGd2/dECUhpRSlGgVTVUCaBZHQKwZwXmeUY91fZQoaAZoCWgPQwiOzY5Un7h0QJSGlFKUaBVNUgJoFkdArCTZw84ginV9lChoBmgJaA9DCElIpG38sHRAlIaUUpRoFU1VAmgWR0CsJyyRKYiQdX2UKGgGaAloD0MIniPyXcq3dECUhpRSlGgVTVUCaBZHQKwy6YZ2pyZ1fZQoaAZoCWgPQwgXvOgrSMN0QJSGlFKUaBVNVgJoFkdArDVSTyJ9A3V9lChoBmgJaA9DCPUu3o+bpHRAlIaUUpRoFU1YAmgWR0CsQYCXQdCFdX2UKGgGaAloD0MISUp6GNq1dECUhpRSlGgVTVICaBZHQKxDZ4fOlft1fZQoaAZoCWgPQwhy/FBphKx0QJSGlFKUaBVNWgJoFkdArFAS1G9YfXV9lChoBmgJaA9DCI2bGmh+qHRAlIaUUpRoFU1UAmgWR0CsUjtO/L1VdX2UKGgGaAloD0MIebEwRA60dECUhpRSlGgVTU8CaBZHQKxfHP2wmmd1fZQoaAZoCWgPQwjnjv6XK650QJSGlFKUaBVNWwJoFkdArGGKj+Jgs3V9lChoBmgJaA9DCEQUkzfAzPg/lIaUUpRoFU0IAWgWR0CsaAX05EMLdX2UKGgGaAloD0MInYGRl7WrdECUhpRSlGgVTVkCaBZHQKxuOJQcghd1fZQoaAZoCWgPQwiXHeIfNrh0QJSGlFKUaBVNUwJoFkdArHdKMR6F/XV9lChoBmgJaA9DCJyLv+1JtHRAlIaUUpRoFU1RAmgWR0CsfSWEbo8qdX2UKGgGaAloD0MIKSUEq6rCdECUhpRSlGgVTU8CaBZHQKyF78ohIOJ1fZQoaAZoCWgPQwjul09WjMl0QJSGlFKUaBVNUwJoFkdArIvM0aZQYXV9lChoBmgJaA9DCFdAoZ5+wXRAlIaUUpRoFU1LAmgWR0CslEn0K7ZndX2UKGgGaAloD0MIWWq932iudECUhpRSlGgVTVgCaBZHQKyam2AoXsR1fZQoaAZoCWgPQwgFhxdEZLp0QJSGlFKUaBVNVgJoFkdArKLndCVrynV9lChoBmgJaA9DCNNnB1yXrnRAlIaUUpRoFU1YAmgWR0CsqY9zGPxQdX2UKGgGaAloD0MIqDRiZp+wdECUhpRSlGgVTVACaBZHQKyxyuSwGGF1fZQoaAZoCWgPQwiale1DHq50QJSGlFKUaBVNUwJoFkdArLiLJuEVWXV9lChoBmgJaA9DCCjxuROsnnRAlIaUUpRoFU1bAmgWR0CswTjpLVWkdX2UKGgGaAloD0MIQFHZsOacdECUhpRSlGgVTVACaBZHQKzHdfF72L51fZQoaAZoCWgPQwhihsYTQYw4wJSGlFKUaBVLyWgWR0CszFUH6dlNdX2UKGgGaAloD0MIh+EjYoq3dECUhpRSlGgVTVoCaBZHQKzP4SyMUAV1fZQoaAZoCWgPQwjcLckBu61SQJSGlFKUaBVNZQFoFkdArNSP4CZF5XV9lChoBmgJaA9DCMI1d/Q/s3RAlIaUUpRoFU1TAmgWR0Cs3fxU3n6mdX2UKGgGaAloD0MIbw1sleC3dECUhpRSlGgVTU8CaBZHQKzi1bOeJ551fZQoaAZoCWgPQwiQ2O4eILp0QJSGlFKUaBVNTwJoFkdArOwhZ6lchXV9lChoBmgJaA9DCOIDO/5LtnRAlIaUUpRoFU1VAmgWR0Cs8S4YaYNRdX2UKGgGaAloD0MIqaCi6le1dECUhpRSlGgVTVQCaBZHQKz6rPXTVlR1fZQoaAZoCWgPQwhb6bXZ2MJ0QJSGlFKUaBVNVQJoFkdArP+iZc9nsnV9lChoBmgJaA9DCB9KtOTxvHRAlIaUUpRoFU1MAmgWR0CtCL6Xrt3OdX2UKGgGaAloD0MI7j7HRwu7dECUhpRSlGgVTVMCaBZHQK0OJtfG+9J1fZQoaAZoCWgPQwgcJa/OMbh0QJSGlFKUaBVNXwJoFkdArRe8/OdGzHV9lChoBmgJaA9DCBy0Vx+PsnRAlIaUUpRoFU1YAmgWR0CtHJd5yEL6dX2UKGgGaAloD0MIcQM+Pwy1dECUhpRSlGgVTVUCaBZHQK0mY4+bExZ1fZQoaAZoCWgPQwhZT62++rh0QJSGlFKUaBVNWQJoFkdArSu/7rLQonV9lChoBmgJaA9DCBx4tdxZvXRAlIaUUpRoFU1XAmgWR0CtNLo5xR2sdX2UKGgGaAloD0MIdEaU9gawdECUhpRSlGgVTVICaBZHQK0569OARTV1fZQoaAZoCWgPQwjd66S+7LB0QJSGlFKUaBVNUwJoFkdArUOUa/ATI3V9lChoBmgJaA9DCNL+B1hrsHRAlIaUUpRoFU1UAmgWR0CtSHW7e2uxdX2UKGgGaAloD0MIZan1fiOxdECUhpRSlGgVTVUCaBZHQK1Qr2g39751fZQoaAZoCWgPQwheaK7TSJ50QJSGlFKUaBVNZAJoFkdArVV9tl7MPnV9lChoBmgJaA9DCHR63o2FwXRAlIaUUpRoFU1PAmgWR0CtXX/BWPtEdX2UKGgGaAloD0MI6x7ZXLWydECUhpRSlGgVTVUCaBZHQK1id3Cbc451fZQoaAZoCWgPQwgnZr0YyqkGQJSGlFKUaBVNCAFoFkdArWkOMVDa5HV9lChoBmgJaA9DCK1M+KV+uXRAlIaUUpRoFU1RAmgWR0Cta7eT3Zf2dX2UKGgGaAloD0MIqIx/n/G+dECUhpRSlGgVTUwCaBZHQK13/j3mFJx1fZQoaAZoCWgPQwgcXaW767p0QJSGlFKUaBVNVAJoFkdArXqYsRQJonV9lChoBmgJaA9DCG2rWWd8sHRAlIaUUpRoFU1bAmgWR0CthtsDnvDxdX2UKGgGaAloD0MIRfXWwFa+dECUhpRSlGgVTUwCaBZHQK2JNgKnei11fZQoaAZoCWgPQwhOmgZF83hbwJSGlFKUaBVLXWgWR0Cti3XJYDDCdX2UKGgGaAloD0MI56bNOM2xdECUhpRSlGgVTVQCaBZHQK2V8GIKtxN1fZQoaAZoCWgPQwhgHccP1bJ0QJSGlFKUaBVNVQJoFkdArZo3mPo3aXV9lChoBmgJaA9DCHgLJCg+u3RAlIaUUpRoFU1UAmgWR0CtpGnhsImgdX2UKGgGaAloD0MI4jlbQKi5dECUhpRSlGgVTU8CaBZHQK2oqV58jRl1fZQoaAZoCWgPQwjkh0ojpo90QJSGlFKUaBVNfwJoFkdArbJSU5dWyXV9lChoBmgJaA9DCORME7bfpnRAlIaUUpRoFU1UAmgWR0Cttbe36Q/5dX2UKGgGaAloD0MIa4DSUGO7dECUhpRSlGgVTVECaBZHQK3Al5rxiG51fZQoaAZoCWgPQwg2PSgoxbR0QJSGlFKUaBVNUQJoFkdArcN0utfXw3V9lChoBmgJaA9DCKbW+422tHRAlIaUUpRoFU1XAmgWR0CtzlQeNkvsdX2UKGgGaAloD0MICanb2Ze8dECUhpRSlGgVTVECaBZHQK3Rqw/PgNx1fZQoaAZoCWgPQwiOI9biE710QJSGlFKUaBVNUgJoFkdArdxgPVd5ZHV9lChoBmgJaA9DCM+goX/CtnRAlIaUUpRoFU1TAmgWR0Ct33GBWgezdX2UKGgGaAloD0MItf0rK03GdECUhpRSlGgVTVICaBZHQK3qunVG0/p1fZQoaAZoCWgPQwgEkUWaOJ10QJSGlFKUaBVNXQJoFkdAre4sUAT7EnV9lChoBmgJaA9DCE8eFmrNsXRAlIaUUpRoFU1OAmgWR0Ct+NESM98rdX2UKGgGaAloD0MIs33IWy7EdECUhpRSlGgVTVMCaBZHQK38jAVwgkl1fZQoaAZoCWgPQwg41zBDo7J0QJSGlFKUaBVNSwJoFkdArgdCbF0gbXV9lChoBmgJaA9DCC9QUmABmHRAlIaUUpRoFU1gAmgWR0CuCw2iL2pRdX2UKGgGaAloD0MIDwnf+1uvdECUhpRSlGgVTVcCaBZHQK4VNH0btJF1fZQoaAZoCWgPQwgl6C/0iMJ0QJSGlFKUaBVNSAJoFkdArhkW/Firk3V9lChoBmgJaA9DCBIykGdXu3RAlIaUUpRoFU1dAmgWR0CuI9oInjQzdX2UKGgGaAloD0MICp+tg4PAdECUhpRSlGgVTVQCaBZHQK4nZ+NtIkJ1fZQoaAZoCWgPQwgTDr3Fg710QJSGlFKUaBVNSwJoFkdArjK22JBPbnV9lChoBmgJaA9DCF9f61IjrXRAlIaUUpRoFU1VAmgWR0CuNptedCmedX2UKGgGaAloD0MIrb1PVeHJdECUhpRSlGgVTU4CaBZHQK4/0YZ2pyZ1fZQoaAZoCWgPQwhXIeUnVcJ0QJSGlFKUaBVNVgJoFkdArkPP779AHHV9lChoBmgJaA9DCF5MM91r3HRAlIaUUpRoFU1MAmgWR0CuTgQWN3nqdX2UKGgGaAloD0MIYB+duvKqdECUhpRSlGgVTWECaBZHQK5R8OWBz3h1fZQoaAZoCWgPQwgOaOkKNrN0QJSGlFKUaBVNVgJoFkdArlsdRHf/FXV9lChoBmgJaA9DCLgBnx8GqHRAlIaUUpRoFU1VAmgWR0CuX4DjzZpSdX2UKGgGaAloD0MIIlM+BNW3dECUhpRSlGgVTVACaBZHQK5pscSXdCV1fZQoaAZoCWgPQwi5quy74rR0QJSGlFKUaBVNWAJoFkdArm7aBZpztHV9lChoBmgJaA9DCI7MI38wv3RAlIaUUpRoFU1NAmgWR0CueKJpWV/udX2UKGgGaAloD0MI9IqnHinFdECUhpRSlGgVTU0CaBZHQK59cWTHKfZ1fZQoaAZoCWgPQwilFkomp7x0QJSGlFKUaBVNUgJoFkdAroa4buMMqnVlLg=="
|
86 |
+
},
|
87 |
+
"ep_success_buffer": {
|
88 |
+
":type:": "<class 'collections.deque'>",
|
89 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
90 |
+
},
|
91 |
+
"_n_updates": 294992,
|
92 |
+
"buffer_size": 300000,
|
93 |
+
"batch_size": 256,
|
94 |
+
"learning_starts": 10000,
|
95 |
+
"tau": 0.02,
|
96 |
+
"gamma": 0.98,
|
97 |
+
"gradient_steps": 8,
|
98 |
+
"optimize_memory_usage": false,
|
99 |
+
"replay_buffer_class": {
|
100 |
+
":type:": "<class 'abc.ABCMeta'>",
|
101 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
102 |
+
"__module__": "stable_baselines3.common.buffers",
|
103 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
104 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f220100bb00>",
|
105 |
+
"add": "<function ReplayBuffer.add at 0x7f220100bb90>",
|
106 |
+
"sample": "<function ReplayBuffer.sample at 0x7f2200b70710>",
|
107 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f2200b707a0>",
|
108 |
+
"__abstractmethods__": "frozenset()",
|
109 |
+
"_abc_impl": "<_abc_data object at 0x7f2201042e10>"
|
110 |
+
},
|
111 |
+
"replay_buffer_kwargs": {},
|
112 |
+
"train_freq": {
|
113 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
114 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
115 |
+
},
|
116 |
+
"use_sde_at_warmup": false,
|
117 |
+
"target_entropy": -4.0,
|
118 |
+
"ent_coef": "auto",
|
119 |
+
"target_update_interval": 1,
|
120 |
+
"top_quantiles_to_drop_per_net": 2
|
121 |
+
}
|
tqc-BipedalWalker-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:997939c237a6d20efb585defa41fbf4cbe82e928234788ccffdd41356b66c0a7
|
3 |
+
size 1255
|
tqc-BipedalWalker-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e1a6ce4d590973ff87fa25b0969d53b7c5dad14b0846d1ae77b904fda446a1c
|
3 |
+
size 2771784
|
tqc-BipedalWalker-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:972008343cee2b0aa1760fc65727cd33a89a26e567680f284e3ceb4328e72b53
|
3 |
+
size 747
|
tqc-BipedalWalker-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-41-generic-x86_64-with-debian-bullseye-sid #46~20.04.1-Ubuntu SMP Wed Apr 20 13:16:21 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a6
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|