araffin commited on
Commit
fc20291
1 Parent(s): 465897a

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
29
+ vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - donkey-mountain-track-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 3003.20 +/- 9.77
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: donkey-mountain-track-v0
20
+ type: donkey-mountain-track-v0
21
+ ---
22
+
23
+ # **TQC** Agent playing **donkey-mountain-track-v0**
24
+ This is a trained model of a **TQC** agent playing **donkey-mountain-track-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo tqc --env donkey-mountain-track-v0 -orga araffin -f logs/
41
+ python enjoy.py --algo tqc --env donkey-mountain-track-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo tqc --env donkey-mountain-track-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo tqc --env donkey-mountain-track-v0 -f logs/ -orga araffin
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 256),
54
+ ('buffer_size', 200000),
55
+ ('callback',
56
+ [{'utils.callbacks.ParallelTrainCallback': {'gradient_steps': 200}},
57
+ 'utils.callbacks.LapTimeCallback']),
58
+ ('ent_coef', 'auto'),
59
+ ('env_wrapper',
60
+ ['ae.wrapper.AutoencoderWrapper',
61
+ {'utils.wrappers.HistoryWrapper': {'horizon': 2}}]),
62
+ ('gamma', 0.99),
63
+ ('gradient_steps', 256),
64
+ ('learning_rate', 0.00073),
65
+ ('learning_starts', 500),
66
+ ('n_timesteps', 2000000.0),
67
+ ('normalize', "{'norm_obs': True, 'norm_reward': False}"),
68
+ ('policy', 'MlpPolicy'),
69
+ ('policy_kwargs',
70
+ 'dict(log_std_init=-3, net_arch=[256, 256], n_critics=2, '
71
+ 'use_expln=True)'),
72
+ ('sde_sample_freq', 16),
73
+ ('tau', 0.02),
74
+ ('train_freq', 200),
75
+ ('use_sde', True),
76
+ ('use_sde_at_warmup', True),
77
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
78
+ ```
79
+
80
+ # Environment Arguments
81
+ ```python
82
+ {'conf': {'cam_resolution': (120, 160, 3),
83
+ 'car_config': {'body_rgb': (226, 112, 18),
84
+ 'body_style': 'donkey',
85
+ 'car_name': 'Toni',
86
+ 'font_size': 40},
87
+ 'frame_skip': 1,
88
+ 'host': 'localhost',
89
+ 'level': 'mountain_track',
90
+ 'log_level': 20,
91
+ 'max_cte': 16,
92
+ 'port': 9091,
93
+ 'start_delay': 5.0},
94
+ 'steer': 0.5}
95
+ ```
args.yml ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - tqc
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - donkey-mountain-track-v0
8
+ - - env_kwargs
9
+ - conf:
10
+ cam_resolution: !!python/tuple
11
+ - 120
12
+ - 160
13
+ - 3
14
+ frame_skip: 1
15
+ host: localhost
16
+ level: mountain_track
17
+ log_level: 20
18
+ max_cte: 16
19
+ port: 9091
20
+ start_delay: 5.0
21
+ steer: 0.5
22
+ - - eval_episodes
23
+ - 5
24
+ - - eval_freq
25
+ - -1
26
+ - - gym_packages
27
+ - []
28
+ - - hyperparams
29
+ - learning_starts: 500
30
+ - - log_folder
31
+ - logs
32
+ - - log_interval
33
+ - -1
34
+ - - n_eval_envs
35
+ - 1
36
+ - - n_evaluations
37
+ - null
38
+ - - n_jobs
39
+ - 1
40
+ - - n_startup_trials
41
+ - 10
42
+ - - n_timesteps
43
+ - -1
44
+ - - n_trials
45
+ - 500
46
+ - - no_optim_plots
47
+ - false
48
+ - - num_threads
49
+ - -1
50
+ - - offline_algo
51
+ - null
52
+ - - optimization_log_path
53
+ - null
54
+ - - optimize_hyperparameters
55
+ - false
56
+ - - pretrain_buffer
57
+ - null
58
+ - - pretrain_params
59
+ - null
60
+ - - pruner
61
+ - median
62
+ - - sampler
63
+ - tpe
64
+ - - save_freq
65
+ - 25000
66
+ - - save_replay_buffer
67
+ - false
68
+ - - seed
69
+ - 4190083556
70
+ - - storage
71
+ - null
72
+ - - study_name
73
+ - null
74
+ - - tensorboard_log
75
+ - runs/donkey-mountain-track-v0__tqc__4190083556__1649751466
76
+ - - track
77
+ - true
78
+ - - trained_agent
79
+ - ''
80
+ - - truncate_last_trajectory
81
+ - true
82
+ - - uuid
83
+ - false
84
+ - - vec_env
85
+ - dummy
86
+ - - verbose
87
+ - 1
88
+ - - wandb_entity
89
+ - null
90
+ - - wandb_project_name
91
+ - donkeycar
config.yml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 200000
6
+ - - callback
7
+ - - utils.callbacks.ParallelTrainCallback:
8
+ gradient_steps: 200
9
+ - utils.callbacks.LapTimeCallback
10
+ - - ent_coef
11
+ - auto
12
+ - - env_wrapper
13
+ - - ae.wrapper.AutoencoderWrapper
14
+ - utils.wrappers.HistoryWrapper:
15
+ horizon: 2
16
+ - - gamma
17
+ - 0.99
18
+ - - gradient_steps
19
+ - 256
20
+ - - learning_rate
21
+ - 0.00073
22
+ - - learning_starts
23
+ - 500
24
+ - - n_timesteps
25
+ - 2000000.0
26
+ - - normalize
27
+ - '{''norm_obs'': True, ''norm_reward'': False}'
28
+ - - policy
29
+ - MlpPolicy
30
+ - - policy_kwargs
31
+ - dict(log_std_init=-3, net_arch=[256, 256], n_critics=2, use_expln=True)
32
+ - - sde_sample_freq
33
+ - 16
34
+ - - tau
35
+ - 0.02
36
+ - - train_freq
37
+ - 200
38
+ - - use_sde
39
+ - true
40
+ - - use_sde_at_warmup
41
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ conf:
2
+ cam_resolution: !!python/tuple
3
+ - 120
4
+ - 160
5
+ - 3
6
+ car_config:
7
+ body_rgb: !!python/tuple
8
+ - 226
9
+ - 112
10
+ - 18
11
+ body_style: donkey
12
+ car_name: Toni
13
+ font_size: 40
14
+ frame_skip: 1
15
+ host: localhost
16
+ level: mountain_track
17
+ log_level: 20
18
+ max_cte: 16
19
+ port: 9091
20
+ start_delay: 5.0
21
+ steer: 0.5
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 3003.2044213, "std_reward": 9.768151272485037, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-04T22:23:17.491627"}
tqc-donkey-mountain-track-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd2a6e624eef5badbe2e856b8b6956455346035aeffe7c8e37015e673dddfc7a
3
+ size 3968979
tqc-donkey-mountain-track-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
tqc-donkey-mountain-track-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3023d37981db7d33b53a63081cf37a25c33f60efd1b644ab4b70f49f54ec1673
3
+ size 683707
tqc-donkey-mountain-track-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d77d8dd41f1aade31e7c9ca09df5f191d2327884906c29b7074ac8f92a9372a2
3
+ size 1460637
tqc-donkey-mountain-track-v0/data ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TQCPolicy.__init__ at 0x7f509167d3b0>",
8
+ "_build": "<function TQCPolicy._build at 0x7f509167d440>",
9
+ "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f509167d4d0>",
10
+ "reset_noise": "<function TQCPolicy.reset_noise at 0x7f509167d560>",
11
+ "make_actor": "<function TQCPolicy.make_actor at 0x7f509167d5f0>",
12
+ "make_critic": "<function TQCPolicy.make_critic at 0x7f509167d680>",
13
+ "forward": "<function TQCPolicy.forward at 0x7f509167d710>",
14
+ "_predict": "<function TQCPolicy._predict at 0x7f509167d7a0>",
15
+ "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f509167d830>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7f509166a810>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "log_std_init": -3,
22
+ "net_arch": [
23
+ 256,
24
+ 256
25
+ ],
26
+ "n_critics": 2,
27
+ "use_expln": true,
28
+ "use_sde": true
29
+ },
30
+ "observation_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gASVNQQAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLRoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUtGhZRoColCGAEAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAAL8AAAC/AAAAAAAAAACUdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBS0aFlGgKiUIYAQAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AAAAPwAAAD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLRoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQ0YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUtGhZRoKolDRgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 70
36
+ ],
37
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -0.5 -0.5 0. 0. ]",
38
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf 0.5 0.5 1. 1. ]",
39
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False True True True True]",
40
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False True True True True]",
41
+ "_np_random": null
42
+ },
43
+ "action_space": {
44
+ ":type:": "<class 'gym.spaces.box.Box'>",
45
+ ":serialized:": "gASVFwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCAAAAL8AAAAAlHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCAAAAD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDqMBXN0YXRllH2UKIwDa2V5lGgSaBRLAIWUaBaHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
46
+ "dtype": "float32",
47
+ "_shape": [
48
+ 2
49
+ ],
50
+ "low": "[-0.5 0. ]",
51
+ "high": "[0.5 1. ]",
52
+ "bounded_below": "[ True True]",
53
+ "bounded_above": "[ True True]",
54
+ "_np_random": "RandomState(MT19937)"
55
+ },
56
+ "n_envs": 1,
57
+ "num_timesteps": 0,
58
+ "_total_timesteps": 2000000,
59
+ "_num_timesteps_at_start": 0,
60
+ "seed": 0,
61
+ "action_noise": null,
62
+ "start_time": 1649751476.6629932,
63
+ "learning_rate": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
66
+ },
67
+ "tensorboard_log": "runs/donkey-mountain-track-v0__tqc__4190083556__1649751466/donkey-mountain-track-v0",
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
71
+ },
72
+ "_last_obs": null,
73
+ "_last_episode_starts": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
76
+ },
77
+ "_last_original_obs": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVpQEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLRoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIYAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvwWQvv0h2r15gmnA0kcQQJDPPcAloCBA/6DVvwvaHz8uxgtAPL1Gvsf3577WuvM/DStrQK6VBMAUCTM/JPuNv45Z8j/40Se/eV6fP3oODkDKAU+/NH2/PzX8Hb/Yk7e/YJgFQCCYWj+CKJu/LOkcQJX4lb9s/ra/QZGCvYOnm78AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
80
+ },
81
+ "_episode_num": 0,
82
+ "use_sde": true,
83
+ "sde_sample_freq": 16,
84
+ "_current_progress_remaining": 1,
85
+ "ep_info_buffer": {
86
+ ":type:": "<class 'collections.deque'>",
87
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
88
+ },
89
+ "ep_success_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
92
+ },
93
+ "_n_updates": 1964000,
94
+ "buffer_size": 1,
95
+ "batch_size": 256,
96
+ "learning_starts": 500,
97
+ "tau": 0.02,
98
+ "gamma": 0.99,
99
+ "gradient_steps": 256,
100
+ "optimize_memory_usage": false,
101
+ "replay_buffer_class": {
102
+ ":type:": "<class 'abc.ABCMeta'>",
103
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
104
+ "__module__": "stable_baselines3.common.buffers",
105
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
106
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f5091f1c830>",
107
+ "add": "<function ReplayBuffer.add at 0x7f5091f1c8c0>",
108
+ "sample": "<function ReplayBuffer.sample at 0x7f5091a88f80>",
109
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f5091a87050>",
110
+ "__abstractmethods__": "frozenset()",
111
+ "_abc_impl": "<_abc_data object at 0x7f5091f58cc0>"
112
+ },
113
+ "replay_buffer_kwargs": {},
114
+ "train_freq": {
115
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
116
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLyGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
117
+ },
118
+ "use_sde_at_warmup": true,
119
+ "target_entropy": -2.0,
120
+ "ent_coef": "auto",
121
+ "target_update_interval": 1,
122
+ "top_quantiles_to_drop_per_net": 2
123
+ }
tqc-donkey-mountain-track-v0/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df90206796e8196f7e0a68c7dfc5a97887f840fa4e6d912c6254cd148a5f783c
3
+ size 1191
tqc-donkey-mountain-track-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24468f2ebb85cdcdc85c49708211fcadc6690dea86953ef96ad83809d9e8fd96
3
+ size 1804488
tqc-donkey-mountain-track-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a8f0a75d41f5d1bdd10337ea992bfce5de7def5561d55535804c08878303f80
3
+ size 747
tqc-donkey-mountain-track-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-113-generic-x86_64-with-debian-bullseye-sid #127-Ubuntu SMP Wed May 18 14:30:56 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0+cpu
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c2b77d4e56d0653b5ba32a88cc738a6cbffd4a5c8c2a107c846de617b5d76ae
3
+ size 21159
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c3c0bdb08c8c1c0b13648d87e74ada331d2896f943b318b3aeac207d427e281
3
+ size 6373