--- library_name: stable-baselines3 tags: - donkey-warren-track-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: TQC results: - metrics: - type: mean_reward value: 175.85 +/- 2.78 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: donkey-warren-track-v0 type: donkey-warren-track-v0 --- # **TQC** Agent playing **donkey-warren-track-v0** This is a trained model of a **TQC** agent playing **donkey-warren-track-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Autoencoder: https://github.com/araffin/aae-train-donkeycar branch: `feat/race_june`
Gym env: https://github.com/araffin/gym-donkeycar-1 branch: `feat/race_june`
RL Zoo branch: `feat/gym-donkeycar` **Pretrained autoencoder** can be downloaded here: https://github.com/araffin/aae-train-donkeycar/releases/download/live-twitch-2/match_ae-32_monaco_warren.pkl ``` export AE_PATH=/path/to/match_ae-32_monaco_warren.pkl # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo tqc --env donkey-warren-track-v0 -orga araffin -f logs/ python enjoy.py --algo tqc --env donkey-warren-track-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo tqc --env donkey-warren-track-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo tqc --env donkey-warren-track-v0 -f logs/ -orga araffin ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('buffer_size', 200000), ('callback', [{'rl_zoo3.callbacks.ParallelTrainCallback': {'gradient_steps': 200}}, 'rl_zoo3.callbacks.LapTimeCallback']), ('ent_coef', 'auto'), ('env_wrapper', [{'gym.wrappers.time_limit.TimeLimit': {'max_episode_steps': 10000}}, 'ae.wrapper.AutoencoderWrapper', {'rl_zoo3.wrappers.HistoryWrapper': {'horizon': 2}}]), ('gamma', 0.99), ('gradient_steps', 256), ('learning_rate', 0.00073), ('learning_starts', 500), ('n_timesteps', 2000000.0), ('normalize', "{'norm_obs': True, 'norm_reward': False}"), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(log_std_init=-3, net_arch=[256, 256], n_critics=2, ' 'use_expln=True)'), ('sde_sample_freq', 16), ('tau', 0.02), ('train_freq', 200), ('use_sde', True), ('use_sde_at_warmup', True), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ``` # Environment Arguments ```python {'conf': {'cam_resolution': (120, 160, 3), 'car_config': {'body_rgb': (226, 112, 18), 'body_style': 'donkey', 'car_name': 'Toni', 'font_size': 40}, 'frame_skip': 1, 'host': 'localhost', 'level': 'warren', 'log_level': 20, 'max_cte': 8, 'port': 9091, 'start_delay': 5.0}, 'min_throttle': -0.2, 'steer': 0.8} ```