trained model 5e+06 steps
Browse files- LunarLander-v2-ppo.zip +2 -2
- LunarLander-v2-ppo/data +21 -18
- LunarLander-v2-ppo/policy.optimizer.pth +1 -1
- LunarLander-v2-ppo/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
LunarLander-v2-ppo.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ef7a459dad470de094a8dbdd20de84ad4ff2b4d9b0329cc221deeb624c80e75
|
3 |
+
size 144797
|
LunarLander-v2-ppo/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -47,16 +47,19 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
-
"learning_rate":
|
52 |
-
|
|
|
|
|
|
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,7 +72,7 @@
|
|
69 |
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff6c8f17200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff6c8f17290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff6c8f17320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff6c8f173b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff6c8f17440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff6c8f174d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff6c8f17560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff6c8f175f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff6c8f17680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff6c8f17710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff6c8f177a0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff6c8f672a0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652218716.4033158,
|
51 |
+
"learning_rate": {
|
52 |
+
":type:": "<class 'function'>",
|
53 |
+
":serialized:": "gAWVegIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDS0NDGGQBZAJ8ABgAFABkAhcAdABkAxkAFABTAJQoTke/7mZmZmZmZksBjAJscpR0lIwGY29uZmlnlIWUjANwY3SUhZSMHjxpcHl0aG9uLWlucHV0LTUtZjFiYmIwOTA2MTczPpSMEmxpbmVhcl9kZWNheV9zY2hlZJRLAUMCAAGUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBp9lH2UKGgXaBGMDF9fcXVhbG5hbWVfX5RoEYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZRoDH2UKIwLcG9saWN5X3R5cGWUjAlNbHBQb2xpY3mUjA90b3RhbF90aW1lc3RlcHOUSkBLTACMBHNlZWSUTUoDaApHP1BiTdLxqfyMBWRlY2F5lIiMCmJhdGNoX3NpemWUTQABjAl0YXJnZXRfa2yUTowIZW50X2NvZWaURz+EeuFHrhR7dXN1hpSGUjAu"
|
54 |
+
},
|
55 |
+
"tensorboard_log": "runs/10l5rxbr",
|
56 |
"lr_schedule": {
|
57 |
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gAWVegIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDS0NDGGQBZAJ8ABgAFABkAhcAdABkAxkAFABTAJQoTke/7mZmZmZmZksBjAJscpR0lIwGY29uZmlnlIWUjANwY3SUhZSMHjxpcHl0aG9uLWlucHV0LTUtZjFiYmIwOTA2MTczPpSMEmxpbmVhcl9kZWNheV9zY2hlZJRLAUMCAAGUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBp9lH2UKGgXaBGMDF9fcXVhbG5hbWVfX5RoEYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZRoDH2UKIwLcG9saWN5X3R5cGWUjAlNbHBQb2xpY3mUjA90b3RhbF90aW1lc3RlcHOUSkBLTACMBHNlZWSUTUoDaApHP1BiTdLxqfyMBWRlY2F5lIiMCmJhdGNoX3NpemWUTQABjAl0YXJnZXRfa2yUTowIZW50X2NvZWaURz+EeuFHrhR7dXN1hpSGUjAu"
|
59 |
},
|
60 |
"_last_obs": {
|
61 |
":type:": "<class 'numpy.ndarray'>",
|
62 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrGq7wpaHK6mjhMMxpxai7M4Uu7c67HswAAgD8AAIA/sCirPrtsRj/jgHM9ZLM2vzwqFz9XlCm+AAAAAAAAAACaXre9SOeHulpHQ7aRdYqxKydaOvqsZTUAAIA/AACAP4DoMb0ooZU/EC2Wvb07Y7/GS5C9YON/vQAAAAAAAAAAJidLPoDRoD6OS4y9zH1Ev4ZAvD7L11G+AAAAAAAAAACzvXS96JlUP4BQ8b3SpoG/TsnSvZPnlL0AAAAAAAAAABqbJz17kqG6ZsrEt+ZmsLKcnpW6RdLiNgAAgD8AAIA/ABF/PVwvdroB3oa9ZhGDuaD3NbsG6+s4AACAPwAAgD9zdse9B9kjPqieCz4Cjgq/EbL9vBZ7zT0AAAAAAAAAAEZ4N74ya4Y/t4GRvrVsSL+LYaW+itEdvgAAAAAAAAAApstyPjwQzT6rZaK+wEsOv+92hz4zoYu+AAAAAAAAAADNSC2+HBKGPwZH6L42RDe/d92lvqA7lr4AAAAAAAAAAFoQ173sxY27krxJPrKB9r0+B6a8vYZwvwAAgD8AAIA/5s1Qvli+mj6KrqM+P6kgv0sNqr0KJ1I+AAAAAAAAAAAAG1G9VJCgP67Vv74p6zm/LuZuvTOdj74AAAAAAAAAAM1OvTwiqCI/YdeLPUQmdL8sedI8sbBGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
63 |
},
|
64 |
"_last_episode_starts": {
|
65 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
72 |
"_current_progress_remaining": -0.0027007999999999477,
|
73 |
"ep_info_buffer": {
|
74 |
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIndoZpjZMckCUhpRSlIwBbJRLrIwBdJRHQKX/POTJQtV1fZQoaAZoCWgPQwjOxHQhVj5yQJSGlFKUaBVLf2gWR0Cl/26+36RAdX2UKGgGaAloD0MIzox+NBy2ckCUhpRSlGgVS5poFkdApf+nhZQpF3V9lChoBmgJaA9DCNzZVx4kJXNAlIaUUpRoFUu+aBZHQKX/thtLteF1fZQoaAZoCWgPQwjZWl8kdF1wQJSGlFKUaBVLl2gWR0Cl/80cwQDndX2UKGgGaAloD0MIpmCNsymQckCUhpRSlGgVS6poFkdApf/7yJ9Ao3V9lChoBmgJaA9DCJWbqKU5XGNAlIaUUpRoFU3oA2gWR0CmACyy2QXAdX2UKGgGaAloD0MIqwSLw5mJU0CUhpRSlGgVS4poFkdApgBKrzXjEXV9lChoBmgJaA9DCJmByvg3hXFAlIaUUpRoFUuKaBZHQKYAbngYP5J1fZQoaAZoCWgPQwgv/OB8KjxzQJSGlFKUaBVLsWgWR0CmAHTr/sE8dX2UKGgGaAloD0MIJ71vfC3Xc0CUhpRSlGgVS8doFkdApgCBmEoOQXV9lChoBmgJaA9DCHjuPVxy5nNAlIaUUpRoFUvFaBZHQKYAfftx+8Z1fZQoaAZoCWgPQwiIZMixNYdxQJSGlFKUaBVLj2gWR0CmAKTeoDPodX2UKGgGaAloD0MIA5SGGgX9cECUhpRSlGgVS51oFkdApgDJl4C6pnV9lChoBmgJaA9DCPHydK5oOXJAlIaUUpRoFUusaBZHQKYA0qy4Wk91fZQoaAZoCWgPQwjEPgEUY5BzQJSGlFKUaBVLx2gWR0CmAOHg5zYFdX2UKGgGaAloD0MIhzYAGxBmckCUhpRSlGgVS5ZoFkdApgERISUTtnV9lChoBmgJaA9DCLN4sTAEVnFAlIaUUpRoFUuuaBZHQKYBFjDKoyd1fZQoaAZoCWgPQwjLhcq/FhdyQJSGlFKUaBVLxmgWR0CmARsoc7yQdX2UKGgGaAloD0MIYtuizMYGc0CUhpRSlGgVS49oFkdApgEgJkXk53V9lChoBmgJaA9DCBzPZ0B9u3FAlIaUUpRoFUuOaBZHQKYBQ0+kgwJ1fZQoaAZoCWgPQwgdWmQ7n5lyQJSGlFKUaBVLuGgWR0CmAWcQyylfdX2UKGgGaAloD0MI+wW7YdvJb0CUhpRSlGgVS49oFkdApgFt3Ux20XV9lChoBmgJaA9DCMxFfCemgnFAlIaUUpRoFUugaBZHQKYBr4nndO91fZQoaAZoCWgPQwhmTMEaJ9pyQJSGlFKUaBVLnmgWR0CmAdTxgAp8dX2UKGgGaAloD0MIvHmqQ27AcUCUhpRSlGgVS5toFkdApgHWlMyrP3V9lChoBmgJaA9DCHB5rBkZAnFAlIaUUpRoFUuoaBZHQKYB91Gsmv51fZQoaAZoCWgPQwhf04OCktNxQJSGlFKUaBVLsmgWR0CmAfup0fYBdX2UKGgGaAloD0MIxhUXR6VackCUhpRSlGgVS4VoFkdApgH7bvgFYHV9lChoBmgJaA9DCItR19p7DHJAlIaUUpRoFUuuaBZHQKYCJdonKGN1fZQoaAZoCWgPQwiZY3lXPSdxQJSGlFKUaBVLpWgWR0CmAjdNFjNIdX2UKGgGaAloD0MIdAmH3iKzckCUhpRSlGgVS5toFkdApgI7HyVfNXV9lChoBmgJaA9DCHIVi98U0XJAlIaUUpRoFUuFaBZHQKYCmbFS88N1fZQoaAZoCWgPQwilMsUcRBVxQJSGlFKUaBVLrWgWR0CmAprOAy2ydX2UKGgGaAloD0MIZ5lFKLaPcUCUhpRSlGgVS4loFkdApgKeUjcEeXV9lChoBmgJaA9DCMI1d/S/0nJAlIaUUpRoFUupaBZHQKYCnlmOEM91fZQoaAZoCWgPQwhblxqhX8FzQJSGlFKUaBVLr2gWR0CmAqY4Qz1sdX2UKGgGaAloD0MIldOeknNYcUCUhpRSlGgVS6JoFkdApgKzZDiOvXV9lChoBmgJaA9DCL4yb9X1snFAlIaUUpRoFUu4aBZHQKYCr2Cdz4l1fZQoaAZoCWgPQwgRqz/C8K5xQJSGlFKUaBVLkmgWR0CmAvF9BrvcdX2UKGgGaAloD0MI48RXOwrvcECUhpRSlGgVS5JoFkdApgMVXq7iAHV9lChoBmgJaA9DCPvlkxUDIHJAlIaUUpRoFUubaBZHQKYDS9ugpSd1fZQoaAZoCWgPQwimY84ztklwQJSGlFKUaBVLnWgWR0CmA1RzBAObdX2UKGgGaAloD0MIqkNuhltvcECUhpRSlGgVS6BoFkdApgNb6ciGFnV9lChoBmgJaA9DCNKowMn2mXBAlIaUUpRoFUufaBZHQKYDh2FnIyV1fZQoaAZoCWgPQwhh3uNMk4xzQJSGlFKUaBVLxWgWR0CmA4pAUtZndX2UKGgGaAloD0MI2VvK+SJkcECUhpRSlGgVS6FoFkdApgOhlpXZG3V9lChoBmgJaA9DCGYtBaR9sHFAlIaUUpRoFUuraBZHQKYDs4ku6Et1fZQoaAZoCWgPQwh+chQgShdyQJSGlFKUaBVLgGgWR0CmA74kE9t/dX2UKGgGaAloD0MIt7dbkoOQcECUhpRSlGgVS5RoFkdApgPh9ZzPr3V9lChoBmgJaA9DCIquCz94CHNAlIaUUpRoFUuYaBZHQKYD6JGe+VV1fZQoaAZoCWgPQwgtCyb+aJVyQJSGlFKUaBVLpWgWR0CmBBw+MZP3dX2UKGgGaAloD0MISG+4j9z8cUCUhpRSlGgVS7BoFkdApgQgG2TgVHV9lChoBmgJaA9DCHBfB85ZM3FAlIaUUpRoFUuqaBZHQKYEI7YChex1fZQoaAZoCWgPQwj1nzU/PmJxQJSGlFKUaBVLkWgWR0CmBFe9SMtLdX2UKGgGaAloD0MI6gWf5mRgcUCUhpRSlGgVS35oFkdApgRim8/Uv3V9lChoBmgJaA9DCP5EZcOaHXNAlIaUUpRoFUvRaBZHQKYEZRtxdY51fZQoaAZoCWgPQwhl48EWe6JxQJSGlFKUaBVLpmgWR0CmBGJKaodddX2UKGgGaAloD0MIFxBaD9/9cECUhpRSlGgVS65oFkdApgThcZ9/jXV9lChoBmgJaA9DCHrkDwZeqXJAlIaUUpRoFUu9aBZHQKYE/7zkIX11fZQoaAZoCWgPQwjmlICYBCxzQJSGlFKUaBVLpWgWR0CmBRhddE9ddX2UKGgGaAloD0MIXfxtT5A4ckCUhpRSlGgVS7BoFkdApgUZRXOnmHV9lChoBmgJaA9DCC3SxDuAJHJAlIaUUpRoFUu2aBZHQKYFJF1jiGZ1fZQoaAZoCWgPQwiyZfm6jGlyQJSGlFKUaBVLkmgWR0CmBTcuJ1q4dX2UKGgGaAloD0MIS5ARUGFMckCUhpRSlGgVS7ZoFkdApgVb0Yj0MHV9lChoBmgJaA9DCOEnDqAfFnJAlIaUUpRoFUuLaBZHQKYFYAskIHF1fZQoaAZoCWgPQwgLmpZYmT5zQJSGlFKUaBVLxmgWR0CmBXgcDKYBdX2UKGgGaAloD0MIDLCPTt28b0CUhpRSlGgVS5RoFkdApgV/VVghKXV9lChoBmgJaA9DCN45lKFq/XNAlIaUUpRoFUuiaBZHQKYFljAi3Xt1fZQoaAZoCWgPQwhaY9AJ4WNwQJSGlFKUaBVLhmgWR0CmBZTUI9kjdX2UKGgGaAloD0MI2xg74WW8cUCUhpRSlGgVS4NoFkdApgWbJEH+qHV9lChoBmgJaA9DCAIQd/Wq8HFAlIaUUpRoFUvTaBZHQKYFwz0HyEt1fZQoaAZoCWgPQwjRyVLrfaxxQJSGlFKUaBVLpmgWR0CmBd/Ru0kXdX2UKGgGaAloD0MI+HDJcafmcUCUhpRSlGgVS7RoFkdApgX5rrPdEnV9lChoBmgJaA9DCOW0p+RcxXJAlIaUUpRoFUuJaBZHQKYGEkO7QLN1fZQoaAZoCWgPQwiNKO0NPptxQJSGlFKUaBVLi2gWR0CmBi5fdAPedX2UKGgGaAloD0MIspyE0ldycUCUhpRSlGgVS4toFkdApgZNkSVW0nV9lChoBmgJaA9DCGUAqOLGuXJAlIaUUpRoFUuTaBZHQKYGVGZNO/N1fZQoaAZoCWgPQwiSO2wicz1wQJSGlFKUaBVLnmgWR0CmBmuTRplCdX2UKGgGaAloD0MI2GK3z6oAc0CUhpRSlGgVS6NoFkdApgaS94/u9nV9lChoBmgJaA9DCDI89rMYv3BAlIaUUpRoFUuSaBZHQKYGkh+vyLB1fZQoaAZoCWgPQwgBbECE+ApyQJSGlFKUaBVLk2gWR0CmBpgy/KyOdX2UKGgGaAloD0MIyT7IsmDTcECUhpRSlGgVS5RoFkdApgaxltj0+XV9lChoBmgJaA9DCBCv6xfsgW9AlIaUUpRoFUuZaBZHQKYGubedkJ91fZQoaAZoCWgPQwindRvUPhFxQJSGlFKUaBVLpGgWR0CmBuoOx0MgdX2UKGgGaAloD0MI9BlQbwbqcECUhpRSlGgVS75oFkdApgckqUeMh3V9lChoBmgJaA9DCBxcOua8nHFAlIaUUpRoFUuCaBZHQKYHK0+C9RJ1fZQoaAZoCWgPQwiFevoIvHJwQJSGlFKUaBVLoWgWR0CmBzcpCrtFdX2UKGgGaAloD0MIZwqd19iBckCUhpRSlGgVS8poFkdApgdKvaDf33V9lChoBmgJaA9DCF95kJ7i03NAlIaUUpRoFUvIaBZHQKYHdE3Kji51fZQoaAZoCWgPQwiFe2Xeqr1yQJSGlFKUaBVLomgWR0CmB5psGgSOdX2UKGgGaAloD0MITb9EvHWLb0CUhpRSlGgVS5hoFkdApgelhkRSP3V9lChoBmgJaA9DCHGuYYYGg3FAlIaUUpRoFUuHaBZHQKYHx8Sf16F1fZQoaAZoCWgPQwifyf552n9wQJSGlFKUaBVLiGgWR0CmB8tx2jfvdX2UKGgGaAloD0MIpz/7keLEckCUhpRSlGgVS39oFkdApgfgWJrLyXV9lChoBmgJaA9DCGPUtfZ+BXRAlIaUUpRoFUuwaBZHQKYH5Xp4bCJ1fZQoaAZoCWgPQwgJibSNv89xQJSGlFKUaBVLqmgWR0CmB/AJLM9sdX2UKGgGaAloD0MIzR39L1c/ckCUhpRSlGgVS+ZoFkdApgf7xZuAJHV9lChoBmgJaA9DCPCK4H+rDHFAlIaUUpRoFUulaBZHQKYIEews5GV1fZQoaAZoCWgPQwhAho4dFHpxQJSGlFKUaBVLqWgWR0CmCDH5rP+odWUu"
|
76 |
},
|
77 |
"ep_success_buffer": {
|
78 |
":type:": "<class 'collections.deque'>",
|
LunarLander-v2-ppo/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1a3c2f6c08bc9ae93db39d5bebef061e0b88f1c9955422e636e60bcb0cf713e
|
3 |
size 84893
|
LunarLander-v2-ppo/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f035428cb7af070d4fab5ccf079f0914455495d054ae2a36b37f1f17e620a27b
|
3 |
size 43201
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 292.17 +/- 16.95
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f165b508ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f165b508f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f165b50f050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f165b50f0e0>", "_build": "<function ActorCriticPolicy._build at 0x7f165b50f170>", "forward": "<function ActorCriticPolicy.forward at 0x7f165b50f200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f165b50f290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f165b50f320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f165b50f3b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f165b50f440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f165b50f4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f165b55d510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652215021.174399, "learning_rate": 0.001, "tensorboard_log": "runs/3e2wrau1", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANMQEL6UpVA+/pRlPhTYF78rY5+9y9YrPgAAAAAAAAAATZ1lvXt+qbp2sty0fBJ2r2E4groGUBw0AACAPwAAgD/z2rY9n0Gcu2A1V77TZi298+t1vHu6t74AAIA/AACAP80sJTtcK1+6SwkAPf0ZLLOF0ly7ZntaswAAgD8AAIA/zWO9vN/ssz9yZhG/QSPIvQJyfTySLao8AAAAAAAAAACaU/q8ljegP/5/gL4JsUa/55rwvJaDGb4AAAAAAAAAAM3fgzxEKbk/0ByrPeuyH74DLiq7rGYmOwAAAAAAAAAAGkd5PcOpMboiUi44hN0cM5P3LjolKk+3AACAPwAAgD+QFIy+3p57P4tYpb7l9jC/EeATv24g3L0AAAAAAAAAAOYdb71nzSw+qOUPva+6HL8i3+W9aPxavQAAAAAAAAAAM+vzu1xTT7pTKIY5HGxzNASGG7qrTp64AACAPwAAgD+NxdK9rkWJukrZFDQ8wcgvqQBOOz6Ti7MAAIA/AACAP8C3ET64IPi7M/yOOznfhrko+Vm97qzCugAAgD8AAIA/miQvvfaZnj+Y7Z++4sVIv8O5dL1cwoK+AAAAAAAAAACAwvi9BEcqPnu3kD67jQy/vHPuvcpkWT4AAAAAAAAAAE2SNz2I/Ze8yolpvrEpB7wifVO93ycVvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX7adtobkckCUhpRSlIwBbJRLsYwBdJRHQKYhAYsunMt1fZQoaAZoCWgPQwhgWP58m3RwQJSGlFKUaBVLiWgWR0CmIVYsmOU/dX2UKGgGaAloD0MIvD/eqxaIckCUhpRSlGgVS8NoFkdApiFiMtK7I3V9lChoBmgJaA9DCDwSL0+n73FAlIaUUpRoFUujaBZHQKYhaVafSQZ1fZQoaAZoCWgPQwiqJ/OP/i1wQJSGlFKUaBVLjmgWR0CmIXDSPU8WdX2UKGgGaAloD0MImGn7VxbKc0CUhpRSlGgVS65oFkdApiF0m6XjVHV9lChoBmgJaA9DCPZiKCca2XBAlIaUUpRoFUuaaBZHQKYhmybhFVl1fZQoaAZoCWgPQwja44V0+JFxQJSGlFKUaBVLo2gWR0CmIaArpaA4dX2UKGgGaAloD0MIBkg0gSKRckCUhpRSlGgVS6loFkdApiGf0se4kXV9lChoBmgJaA9DCKck63D0vHFAlIaUUpRoFUuKaBZHQKYhqVbiZOV1fZQoaAZoCWgPQwiPNo5YSxZzQJSGlFKUaBVLumgWR0CmIc6ZH/cWdX2UKGgGaAloD0MIJ92WyMX1cECUhpRSlGgVS7JoFkdApiHW8h9srXV9lChoBmgJaA9DCPUR+MOPEnJAlIaUUpRoFUt4aBZHQKYh5S5RTCN1fZQoaAZoCWgPQwjCaixh7cVyQJSGlFKUaBVLg2gWR0CmIfaBZpztdX2UKGgGaAloD0MIOwDirt57cECUhpRSlGgVS49oFkdApiI+Jiy6c3V9lChoBmgJaA9DCDC5UWQtU3JAlIaUUpRoFUuqaBZHQKYiXkIX0oV1fZQoaAZoCWgPQwh2b0ViAnhzQJSGlFKUaBVLxGgWR0CmIot0/4ZddX2UKGgGaAloD0MIswjFVtD8cUCUhpRSlGgVS3xoFkdApiLDyWiUPnV9lChoBmgJaA9DCDNslPXbW3FAlIaUUpRoFUugaBZHQKYi3ea8Yht1fZQoaAZoCWgPQwioUUgya8JwQJSGlFKUaBVLjmgWR0CmIuawt8NQdX2UKGgGaAloD0MIfoy5awnfcUCUhpRSlGgVS6poFkdApiLvE61b7nV9lChoBmgJaA9DCO85sBzhSXJAlIaUUpRoFUuxaBZHQKYi7d30PH11fZQoaAZoCWgPQwg1BwjmKNtwQJSGlFKUaBVLqGgWR0CmIvel9BrvdX2UKGgGaAloD0MImpXtQ17kcECUhpRSlGgVS6BoFkdApiMNWdVebHV9lChoBmgJaA9DCALzkClfjHNAlIaUUpRoFUu7aBZHQKYjEJXyRSx1fZQoaAZoCWgPQwgN+tLbH8ZvQJSGlFKUaBVLjWgWR0CmIxyS/0uldX2UKGgGaAloD0MIEFt6NNVScUCUhpRSlGgVS31oFkdApiNnBFd9lXV9lChoBmgJaA9DCOF86lhlmnNAlIaUUpRoFUuraBZHQKYjZZbILgJ1fZQoaAZoCWgPQwiHTs+78UhyQJSGlFKUaBVLm2gWR0CmI2aQmu1XdX2UKGgGaAloD0MIm+YdpyjBc0CUhpRSlGgVS9VoFkdApiOIYR/ViHV9lChoBmgJaA9DCKClK9iGLnNAlIaUUpRoFUvAaBZHQKYjpx9XtBx1fZQoaAZoCWgPQwjEeM2ruoFzQJSGlFKUaBVLomgWR0CmI9wdCE6DdX2UKGgGaAloD0MIgnSxaSVockCUhpRSlGgVS5NoFkdApiRBZlnRLXV9lChoBmgJaA9DCM+Du7P2MnRAlIaUUpRoFUu3aBZHQKYkQqZML4N1fZQoaAZoCWgPQwhNu5hmOpFwQJSGlFKUaBVLmWgWR0CmJFcBdUsGdX2UKGgGaAloD0MIYtuizAZKb0CUhpRSlGgVS45oFkdApiRc/B3zMHV9lChoBmgJaA9DCKX4+ISsg3JAlIaUUpRoFUuuaBZHQKYkY4sEq2B1fZQoaAZoCWgPQwiFlQoqqmZyQJSGlFKUaBVLqGgWR0CmJGx/mT1TdX2UKGgGaAloD0MIXaRQFv4PckCUhpRSlGgVS5NoFkdApiR5TZQHiXV9lChoBmgJaA9DCBdKJqd2H3JAlIaUUpRoFUusaBZHQKYkhUkv9Lp1fZQoaAZoCWgPQwj/XgoP2oRxQJSGlFKUaBVLo2gWR0CmJI/iYLLIdX2UKGgGaAloD0MIgZICC6AJckCUhpRSlGgVS5FoFkdApiS+4/eLvXV9lChoBmgJaA9DCNDv+zfvyHJAlIaUUpRoFUuaaBZHQKYk01/DtPZ1fZQoaAZoCWgPQwipL0s7taxxQJSGlFKUaBVLqWgWR0CmJPgkC3gDdX2UKGgGaAloD0MIYkuPpjpwc0CUhpRSlGgVS+5oFkdApiUmCAc1fnV9lChoBmgJaA9DCJxNRwB3MHJAlIaUUpRoFUu4aBZHQKYlQOXE61d1fZQoaAZoCWgPQwgg1bDf01lyQJSGlFKUaBVLw2gWR0CmJYD9XLeRdX2UKGgGaAloD0MICVIpdjQJc0CUhpRSlGgVS7loFkdApiWg+QlrunV9lChoBmgJaA9DCN/foL16KXJAlIaUUpRoFUuIaBZHQKYl3VQyhzx1fZQoaAZoCWgPQwiCdLFpZfJwQJSGlFKUaBVLo2gWR0CmJejs+mm+dX2UKGgGaAloD0MIPggB+RKjckCUhpRSlGgVS69oFkdApiXrYwqRU3V9lChoBmgJaA9DCIszhjmB7nBAlIaUUpRoFUunaBZHQKYl7aNdZ7p1fZQoaAZoCWgPQwhtN8E3zdBwQJSGlFKUaBVLo2gWR0CmJfyUcGTtdX2UKGgGaAloD0MIyuAoefXlckCUhpRSlGgVS7poFkdApiYLBsQ/YHV9lChoBmgJaA9DCBR6/Ul8T3JAlIaUUpRoFUulaBZHQKYmEU5+6RR1fZQoaAZoCWgPQwhcVfZdUbxzQJSGlFKUaBVLuGgWR0CmJicB2fTTdX2UKGgGaAloD0MIUP7uHbX5c0CUhpRSlGgVS7ZoFkdApiZAvWYnfHV9lChoBmgJaA9DCEMglzhyjnFAlIaUUpRoFUujaBZHQKYmZEAo5Px1fZQoaAZoCWgPQwjp8BDGDxxwQJSGlFKUaBVLmGgWR0CmJnBDPWxydX2UKGgGaAloD0MIT+rL0o4oc0CUhpRSlGgVS9JoFkdApia9PxhDxHV9lChoBmgJaA9DCFTle0YiVAlAlIaUUpRoFUtcaBZHQKYmzuTibUh1fZQoaAZoCWgPQwjR6uQMBUdzQJSGlFKUaBVLpWgWR0CmJtC5EtuldX2UKGgGaAloD0MIqb2ItiMMc0CUhpRSlGgVS7poFkdApibndweeWnV9lChoBmgJaA9DCDl7Z7QVlnFAlIaUUpRoFUuMaBZHQKYm7OCXhOx1fZQoaAZoCWgPQwgTgH9KldtyQJSGlFKUaBVLhWgWR0CmJzmXw9aEdX2UKGgGaAloD0MIe4SaIdW2c0CUhpRSlGgVS79oFkdApidFMdtEX3V9lChoBmgJaA9DCAEUI0vmS3FAlIaUUpRoFUt3aBZHQKYnUNrj5sV1fZQoaAZoCWgPQwi8rl+wm9FvQJSGlFKUaBVLiWgWR0CmJ1zg/C66dX2UKGgGaAloD0MI+GuyRr3Mc0CUhpRSlGgVS6loFkdApid0xmCiAXV9lChoBmgJaA9DCH7DRIMUZ3JAlIaUUpRoFUugaBZHQKYnfLBbfP51fZQoaAZoCWgPQwhJu9HHfGNyQJSGlFKUaBVLsmgWR0CmJ4akRBeHdX2UKGgGaAloD0MIAMYzaGjTckCUhpRSlGgVS8FoFkdApiedB6a9b3V9lChoBmgJaA9DCMWtghjoKHFAlIaUUpRoFUuaaBZHQKYnzLeQ+2V1fZQoaAZoCWgPQwjniedswbpyQJSGlFKUaBVL1WgWR0CmJ9KQiiZfdX2UKGgGaAloD0MI/z7jwgHrcUCUhpRSlGgVS3loFkdApiff1BdD6XV9lChoBmgJaA9DCJcfuMrTi3FAlIaUUpRoFUuraBZHQKYn5rGipNt1fZQoaAZoCWgPQwg6QZscPoBxQJSGlFKUaBVLnmgWR0CmKB7+cYqHdX2UKGgGaAloD0MI9g1MbpSmc0CUhpRSlGgVS59oFkdApihNfVqesnV9lChoBmgJaA9DCF2Kq8r+pXNAlIaUUpRoFUu8aBZHQKYoe36Q/5d1fZQoaAZoCWgPQwic3VomA+BwQJSGlFKUaBVLj2gWR0CmKIBbfP5YdX2UKGgGaAloD0MI5lsf1ttvckCUhpRSlGgVS7JoFkdApiiEAzYVZnV9lChoBmgJaA9DCJ0v9l68EnBAlIaUUpRoFUuUaBZHQKYopNL127p1fZQoaAZoCWgPQwg2BTI7C6lzQJSGlFKUaBVLq2gWR0CmKOs3ZPEbdX2UKGgGaAloD0MI0NOAQZK7ckCUhpRSlGgVS7xoFkdApikzu0CzTnV9lChoBmgJaA9DCNAKDFndgnFAlIaUUpRoFUueaBZHQKYpVh2nsLR1fZQoaAZoCWgPQwglP+JX7HNzQJSGlFKUaBVL32gWR0CmKVmff4yodX2UKGgGaAloD0MIesISDyjvcECUhpRSlGgVS5loFkdApilit7rs0HV9lChoBmgJaA9DCEvmWN4VAXNAlIaUUpRoFUvJaBZHQKYpaSK3uu11fZQoaAZoCWgPQwgEx2XclAFxQJSGlFKUaBVLqmgWR0CmKW7SZ0CBdX2UKGgGaAloD0MIFaxxNp0AckCUhpRSlGgVS6JoFkdApilxTZQHiXV9lChoBmgJaA9DCHgN+tJbtXNAlIaUUpRoFUvFaBZHQKYpeDNhVlx1fZQoaAZoCWgPQwithsQ9FhhyQJSGlFKUaBVLkGgWR0CmKd2DpTuOdX2UKGgGaAloD0MIyAxUxr8pcUCUhpRSlGgVS45oFkdApindBOYYznV9lChoBmgJaA9DCI1feCVJDHFAlIaUUpRoFUuhaBZHQKYp246Oo5x1fZQoaAZoCWgPQwiOlZhnJSNzQJSGlFKUaBVLmWgWR0CmKfs0xdpqdX2UKGgGaAloD0MI58jKL8MjckCUhpRSlGgVS65oFkdApiplSydFv3V9lChoBmgJaA9DCEvNHmiFznJAlIaUUpRoFUuBaBZHQKYqt5HEuQJ1fZQoaAZoCWgPQwhwlScQtnJzQJSGlFKUaBVLmWgWR0CmKsoiTt9hdX2UKGgGaAloD0MIZ/M4DOaAckCUhpRSlGgVS7ZoFkdApirPY+Sr53V9lChoBmgJaA9DCEF/oUdMRnNAlIaUUpRoFUuVaBZHQKYq42NvOyF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.4.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff6c8f17200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff6c8f17290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff6c8f17320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff6c8f173b0>", "_build": "<function ActorCriticPolicy._build at 0x7ff6c8f17440>", "forward": "<function ActorCriticPolicy.forward at 0x7ff6c8f174d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff6c8f17560>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff6c8f175f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff6c8f17680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff6c8f17710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff6c8f177a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff6c8f672a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652218716.4033158, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVegIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDS0NDGGQBZAJ8ABgAFABkAhcAdABkAxkAFABTAJQoTke/7mZmZmZmZksBjAJscpR0lIwGY29uZmlnlIWUjANwY3SUhZSMHjxpcHl0aG9uLWlucHV0LTUtZjFiYmIwOTA2MTczPpSMEmxpbmVhcl9kZWNheV9zY2hlZJRLAUMCAAGUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBp9lH2UKGgXaBGMDF9fcXVhbG5hbWVfX5RoEYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZRoDH2UKIwLcG9saWN5X3R5cGWUjAlNbHBQb2xpY3mUjA90b3RhbF90aW1lc3RlcHOUSkBLTACMBHNlZWSUTUoDaApHP1BiTdLxqfyMBWRlY2F5lIiMCmJhdGNoX3NpemWUTQABjAl0YXJnZXRfa2yUTowIZW50X2NvZWaURz+EeuFHrhR7dXN1hpSGUjAu"}, "tensorboard_log": "runs/10l5rxbr", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVegIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDS0NDGGQBZAJ8ABgAFABkAhcAdABkAxkAFABTAJQoTke/7mZmZmZmZksBjAJscpR0lIwGY29uZmlnlIWUjANwY3SUhZSMHjxpcHl0aG9uLWlucHV0LTUtZjFiYmIwOTA2MTczPpSMEmxpbmVhcl9kZWNheV9zY2hlZJRLAUMCAAGUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBp9lH2UKGgXaBGMDF9fcXVhbG5hbWVfX5RoEYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZRoDH2UKIwLcG9saWN5X3R5cGWUjAlNbHBQb2xpY3mUjA90b3RhbF90aW1lc3RlcHOUSkBLTACMBHNlZWSUTUoDaApHP1BiTdLxqfyMBWRlY2F5lIiMCmJhdGNoX3NpemWUTQABjAl0YXJnZXRfa2yUTowIZW50X2NvZWaURz+EeuFHrhR7dXN1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrGq7wpaHK6mjhMMxpxai7M4Uu7c67HswAAgD8AAIA/sCirPrtsRj/jgHM9ZLM2vzwqFz9XlCm+AAAAAAAAAACaXre9SOeHulpHQ7aRdYqxKydaOvqsZTUAAIA/AACAP4DoMb0ooZU/EC2Wvb07Y7/GS5C9YON/vQAAAAAAAAAAJidLPoDRoD6OS4y9zH1Ev4ZAvD7L11G+AAAAAAAAAACzvXS96JlUP4BQ8b3SpoG/TsnSvZPnlL0AAAAAAAAAABqbJz17kqG6ZsrEt+ZmsLKcnpW6RdLiNgAAgD8AAIA/ABF/PVwvdroB3oa9ZhGDuaD3NbsG6+s4AACAPwAAgD9zdse9B9kjPqieCz4Cjgq/EbL9vBZ7zT0AAAAAAAAAAEZ4N74ya4Y/t4GRvrVsSL+LYaW+itEdvgAAAAAAAAAApstyPjwQzT6rZaK+wEsOv+92hz4zoYu+AAAAAAAAAADNSC2+HBKGPwZH6L42RDe/d92lvqA7lr4AAAAAAAAAAFoQ173sxY27krxJPrKB9r0+B6a8vYZwvwAAgD8AAIA/5s1Qvli+mj6KrqM+P6kgv0sNqr0KJ1I+AAAAAAAAAAAAG1G9VJCgP67Vv74p6zm/LuZuvTOdj74AAAAAAAAAAM1OvTwiqCI/YdeLPUQmdL8sedI8sbBGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIndoZpjZMckCUhpRSlIwBbJRLrIwBdJRHQKX/POTJQtV1fZQoaAZoCWgPQwjOxHQhVj5yQJSGlFKUaBVLf2gWR0Cl/26+36RAdX2UKGgGaAloD0MIzox+NBy2ckCUhpRSlGgVS5poFkdApf+nhZQpF3V9lChoBmgJaA9DCNzZVx4kJXNAlIaUUpRoFUu+aBZHQKX/thtLteF1fZQoaAZoCWgPQwjZWl8kdF1wQJSGlFKUaBVLl2gWR0Cl/80cwQDndX2UKGgGaAloD0MIpmCNsymQckCUhpRSlGgVS6poFkdApf/7yJ9Ao3V9lChoBmgJaA9DCJWbqKU5XGNAlIaUUpRoFU3oA2gWR0CmACyy2QXAdX2UKGgGaAloD0MIqwSLw5mJU0CUhpRSlGgVS4poFkdApgBKrzXjEXV9lChoBmgJaA9DCJmByvg3hXFAlIaUUpRoFUuKaBZHQKYAbngYP5J1fZQoaAZoCWgPQwgv/OB8KjxzQJSGlFKUaBVLsWgWR0CmAHTr/sE8dX2UKGgGaAloD0MIJ71vfC3Xc0CUhpRSlGgVS8doFkdApgCBmEoOQXV9lChoBmgJaA9DCHjuPVxy5nNAlIaUUpRoFUvFaBZHQKYAfftx+8Z1fZQoaAZoCWgPQwiIZMixNYdxQJSGlFKUaBVLj2gWR0CmAKTeoDPodX2UKGgGaAloD0MIA5SGGgX9cECUhpRSlGgVS51oFkdApgDJl4C6pnV9lChoBmgJaA9DCPHydK5oOXJAlIaUUpRoFUusaBZHQKYA0qy4Wk91fZQoaAZoCWgPQwjEPgEUY5BzQJSGlFKUaBVLx2gWR0CmAOHg5zYFdX2UKGgGaAloD0MIhzYAGxBmckCUhpRSlGgVS5ZoFkdApgERISUTtnV9lChoBmgJaA9DCLN4sTAEVnFAlIaUUpRoFUuuaBZHQKYBFjDKoyd1fZQoaAZoCWgPQwjLhcq/FhdyQJSGlFKUaBVLxmgWR0CmARsoc7yQdX2UKGgGaAloD0MIYtuizMYGc0CUhpRSlGgVS49oFkdApgEgJkXk53V9lChoBmgJaA9DCBzPZ0B9u3FAlIaUUpRoFUuOaBZHQKYBQ0+kgwJ1fZQoaAZoCWgPQwgdWmQ7n5lyQJSGlFKUaBVLuGgWR0CmAWcQyylfdX2UKGgGaAloD0MI+wW7YdvJb0CUhpRSlGgVS49oFkdApgFt3Ux20XV9lChoBmgJaA9DCMxFfCemgnFAlIaUUpRoFUugaBZHQKYBr4nndO91fZQoaAZoCWgPQwhmTMEaJ9pyQJSGlFKUaBVLnmgWR0CmAdTxgAp8dX2UKGgGaAloD0MIvHmqQ27AcUCUhpRSlGgVS5toFkdApgHWlMyrP3V9lChoBmgJaA9DCHB5rBkZAnFAlIaUUpRoFUuoaBZHQKYB91Gsmv51fZQoaAZoCWgPQwhf04OCktNxQJSGlFKUaBVLsmgWR0CmAfup0fYBdX2UKGgGaAloD0MIxhUXR6VackCUhpRSlGgVS4VoFkdApgH7bvgFYHV9lChoBmgJaA9DCItR19p7DHJAlIaUUpRoFUuuaBZHQKYCJdonKGN1fZQoaAZoCWgPQwiZY3lXPSdxQJSGlFKUaBVLpWgWR0CmAjdNFjNIdX2UKGgGaAloD0MIdAmH3iKzckCUhpRSlGgVS5toFkdApgI7HyVfNXV9lChoBmgJaA9DCHIVi98U0XJAlIaUUpRoFUuFaBZHQKYCmbFS88N1fZQoaAZoCWgPQwilMsUcRBVxQJSGlFKUaBVLrWgWR0CmAprOAy2ydX2UKGgGaAloD0MIZ5lFKLaPcUCUhpRSlGgVS4loFkdApgKeUjcEeXV9lChoBmgJaA9DCMI1d/S/0nJAlIaUUpRoFUupaBZHQKYCnlmOEM91fZQoaAZoCWgPQwhblxqhX8FzQJSGlFKUaBVLr2gWR0CmAqY4Qz1sdX2UKGgGaAloD0MIldOeknNYcUCUhpRSlGgVS6JoFkdApgKzZDiOvXV9lChoBmgJaA9DCL4yb9X1snFAlIaUUpRoFUu4aBZHQKYCr2Cdz4l1fZQoaAZoCWgPQwgRqz/C8K5xQJSGlFKUaBVLkmgWR0CmAvF9BrvcdX2UKGgGaAloD0MI48RXOwrvcECUhpRSlGgVS5JoFkdApgMVXq7iAHV9lChoBmgJaA9DCPvlkxUDIHJAlIaUUpRoFUubaBZHQKYDS9ugpSd1fZQoaAZoCWgPQwimY84ztklwQJSGlFKUaBVLnWgWR0CmA1RzBAObdX2UKGgGaAloD0MIqkNuhltvcECUhpRSlGgVS6BoFkdApgNb6ciGFnV9lChoBmgJaA9DCNKowMn2mXBAlIaUUpRoFUufaBZHQKYDh2FnIyV1fZQoaAZoCWgPQwhh3uNMk4xzQJSGlFKUaBVLxWgWR0CmA4pAUtZndX2UKGgGaAloD0MI2VvK+SJkcECUhpRSlGgVS6FoFkdApgOhlpXZG3V9lChoBmgJaA9DCGYtBaR9sHFAlIaUUpRoFUuraBZHQKYDs4ku6Et1fZQoaAZoCWgPQwh+chQgShdyQJSGlFKUaBVLgGgWR0CmA74kE9t/dX2UKGgGaAloD0MIt7dbkoOQcECUhpRSlGgVS5RoFkdApgPh9ZzPr3V9lChoBmgJaA9DCIquCz94CHNAlIaUUpRoFUuYaBZHQKYD6JGe+VV1fZQoaAZoCWgPQwgtCyb+aJVyQJSGlFKUaBVLpWgWR0CmBBw+MZP3dX2UKGgGaAloD0MISG+4j9z8cUCUhpRSlGgVS7BoFkdApgQgG2TgVHV9lChoBmgJaA9DCHBfB85ZM3FAlIaUUpRoFUuqaBZHQKYEI7YChex1fZQoaAZoCWgPQwj1nzU/PmJxQJSGlFKUaBVLkWgWR0CmBFe9SMtLdX2UKGgGaAloD0MI6gWf5mRgcUCUhpRSlGgVS35oFkdApgRim8/Uv3V9lChoBmgJaA9DCP5EZcOaHXNAlIaUUpRoFUvRaBZHQKYEZRtxdY51fZQoaAZoCWgPQwhl48EWe6JxQJSGlFKUaBVLpmgWR0CmBGJKaodddX2UKGgGaAloD0MIFxBaD9/9cECUhpRSlGgVS65oFkdApgThcZ9/jXV9lChoBmgJaA9DCHrkDwZeqXJAlIaUUpRoFUu9aBZHQKYE/7zkIX11fZQoaAZoCWgPQwjmlICYBCxzQJSGlFKUaBVLpWgWR0CmBRhddE9ddX2UKGgGaAloD0MIXfxtT5A4ckCUhpRSlGgVS7BoFkdApgUZRXOnmHV9lChoBmgJaA9DCC3SxDuAJHJAlIaUUpRoFUu2aBZHQKYFJF1jiGZ1fZQoaAZoCWgPQwiyZfm6jGlyQJSGlFKUaBVLkmgWR0CmBTcuJ1q4dX2UKGgGaAloD0MIS5ARUGFMckCUhpRSlGgVS7ZoFkdApgVb0Yj0MHV9lChoBmgJaA9DCOEnDqAfFnJAlIaUUpRoFUuLaBZHQKYFYAskIHF1fZQoaAZoCWgPQwgLmpZYmT5zQJSGlFKUaBVLxmgWR0CmBXgcDKYBdX2UKGgGaAloD0MIDLCPTt28b0CUhpRSlGgVS5RoFkdApgV/VVghKXV9lChoBmgJaA9DCN45lKFq/XNAlIaUUpRoFUuiaBZHQKYFljAi3Xt1fZQoaAZoCWgPQwhaY9AJ4WNwQJSGlFKUaBVLhmgWR0CmBZTUI9kjdX2UKGgGaAloD0MI2xg74WW8cUCUhpRSlGgVS4NoFkdApgWbJEH+qHV9lChoBmgJaA9DCAIQd/Wq8HFAlIaUUpRoFUvTaBZHQKYFwz0HyEt1fZQoaAZoCWgPQwjRyVLrfaxxQJSGlFKUaBVLpmgWR0CmBd/Ru0kXdX2UKGgGaAloD0MI+HDJcafmcUCUhpRSlGgVS7RoFkdApgX5rrPdEnV9lChoBmgJaA9DCOW0p+RcxXJAlIaUUpRoFUuJaBZHQKYGEkO7QLN1fZQoaAZoCWgPQwiNKO0NPptxQJSGlFKUaBVLi2gWR0CmBi5fdAPedX2UKGgGaAloD0MIspyE0ldycUCUhpRSlGgVS4toFkdApgZNkSVW0nV9lChoBmgJaA9DCGUAqOLGuXJAlIaUUpRoFUuTaBZHQKYGVGZNO/N1fZQoaAZoCWgPQwiSO2wicz1wQJSGlFKUaBVLnmgWR0CmBmuTRplCdX2UKGgGaAloD0MI2GK3z6oAc0CUhpRSlGgVS6NoFkdApgaS94/u9nV9lChoBmgJaA9DCDI89rMYv3BAlIaUUpRoFUuSaBZHQKYGkh+vyLB1fZQoaAZoCWgPQwgBbECE+ApyQJSGlFKUaBVLk2gWR0CmBpgy/KyOdX2UKGgGaAloD0MIyT7IsmDTcECUhpRSlGgVS5RoFkdApgaxltj0+XV9lChoBmgJaA9DCBCv6xfsgW9AlIaUUpRoFUuZaBZHQKYGubedkJ91fZQoaAZoCWgPQwindRvUPhFxQJSGlFKUaBVLpGgWR0CmBuoOx0MgdX2UKGgGaAloD0MI9BlQbwbqcECUhpRSlGgVS75oFkdApgckqUeMh3V9lChoBmgJaA9DCBxcOua8nHFAlIaUUpRoFUuCaBZHQKYHK0+C9RJ1fZQoaAZoCWgPQwiFevoIvHJwQJSGlFKUaBVLoWgWR0CmBzcpCrtFdX2UKGgGaAloD0MIZwqd19iBckCUhpRSlGgVS8poFkdApgdKvaDf33V9lChoBmgJaA9DCF95kJ7i03NAlIaUUpRoFUvIaBZHQKYHdE3Kji51fZQoaAZoCWgPQwiFe2Xeqr1yQJSGlFKUaBVLomgWR0CmB5psGgSOdX2UKGgGaAloD0MITb9EvHWLb0CUhpRSlGgVS5hoFkdApgelhkRSP3V9lChoBmgJaA9DCHGuYYYGg3FAlIaUUpRoFUuHaBZHQKYHx8Sf16F1fZQoaAZoCWgPQwifyf552n9wQJSGlFKUaBVLiGgWR0CmB8tx2jfvdX2UKGgGaAloD0MIpz/7keLEckCUhpRSlGgVS39oFkdApgfgWJrLyXV9lChoBmgJaA9DCGPUtfZ+BXRAlIaUUpRoFUuwaBZHQKYH5Xp4bCJ1fZQoaAZoCWgPQwgJibSNv89xQJSGlFKUaBVLqmgWR0CmB/AJLM9sdX2UKGgGaAloD0MIzR39L1c/ckCUhpRSlGgVS+ZoFkdApgf7xZuAJHV9lChoBmgJaA9DCPCK4H+rDHFAlIaUUpRoFUulaBZHQKYIEews5GV1fZQoaAZoCWgPQwhAho4dFHpxQJSGlFKUaBVLqWgWR0CmCDH5rP+odWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.4.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b72ccd524f24db2b1ea8b88f770cecf7fe0739d8820cb4a624f4cb0984c758d
|
3 |
+
size 206133
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 292.16911719999996, "std_reward": 16.94838179893787, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T22:25:44.786288"}
|