bartowski commited on
Commit
aca7ce2
0 Parent(s):

Duplicate from bartowski/arcee-lite-GGUF

Browse files
.gitattributes ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ arcee-lite-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
37
+ arcee-lite-Q6_K_L.gguf filter=lfs diff=lfs merge=lfs -text
38
+ arcee-lite-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
39
+ arcee-lite-Q5_K_L.gguf filter=lfs diff=lfs merge=lfs -text
40
+ arcee-lite-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
41
+ arcee-lite-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
42
+ arcee-lite-Q4_K_L.gguf filter=lfs diff=lfs merge=lfs -text
43
+ arcee-lite-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
44
+ arcee-lite-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
45
+ arcee-lite-IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
46
+ arcee-lite-Q3_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
47
+ arcee-lite-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
48
+ arcee-lite-IQ3_M.gguf filter=lfs diff=lfs merge=lfs -text
49
+ arcee-lite-Q2_K_L.gguf filter=lfs diff=lfs merge=lfs -text
50
+ arcee-lite-f32.gguf filter=lfs diff=lfs merge=lfs -text
51
+ arcee-lite.imatrix filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: arcee-ai/arcee-lite
3
+ license: apache-2.0
4
+ pipeline_tag: text-generation
5
+ quantized_by: bartowski
6
+ ---
7
+
8
+ ## Llamacpp imatrix Quantizations of arcee-lite
9
+
10
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3496">b3496</a> for quantization.
11
+
12
+ Original model: https://huggingface.co/arcee-ai/arcee-lite
13
+
14
+ All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
15
+
16
+ Run them in [LM Studio](https://lmstudio.ai/)
17
+
18
+ ## Prompt format
19
+
20
+ ```
21
+ <|im_start|>system
22
+ {system_prompt}<|im_end|>
23
+ <|im_start|>user
24
+ {prompt}<|im_end|>
25
+ <|im_start|>assistant
26
+
27
+ ```
28
+
29
+ ## Download a file (not the whole branch) from below:
30
+
31
+ | Filename | Quant type | File Size | Split | Description |
32
+ | -------- | ---------- | --------- | ----- | ----------- |
33
+ ## Download a file (not the whole branch) from below:
34
+
35
+ | Filename | Quant type | File Size | Split | Description |
36
+ | -------- | ---------- | --------- | ----- | ----------- |
37
+ | [arcee-lite-f32.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-f32.gguf) | f32 | 7.11GB | false | Full F32 weights. |
38
+ | [arcee-lite-Q8_0.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q8_0.gguf) | Q8_0 | 1.89GB | false | Extremely high quality, generally unneeded but max available quant. |
39
+ | [arcee-lite-Q6_K_L.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q6_K_L.gguf) | Q6_K_L | 1.58GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
40
+ | [arcee-lite-Q6_K.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q6_K.gguf) | Q6_K | 1.46GB | false | Very high quality, near perfect, *recommended*. |
41
+ | [arcee-lite-Q5_K_L.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q5_K_L.gguf) | Q5_K_L | 1.43GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
42
+ | [arcee-lite-Q5_K_M.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q5_K_M.gguf) | Q5_K_M | 1.29GB | false | High quality, *recommended*. |
43
+ | [arcee-lite-Q4_K_L.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q4_K_L.gguf) | Q4_K_L | 1.29GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
44
+ | [arcee-lite-Q5_K_S.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q5_K_S.gguf) | Q5_K_S | 1.26GB | false | High quality, *recommended*. |
45
+ | [arcee-lite-Q3_K_XL.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q3_K_XL.gguf) | Q3_K_XL | 1.18GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
46
+ | [arcee-lite-Q4_K_M.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q4_K_M.gguf) | Q4_K_M | 1.12GB | false | Good quality, default size for must use cases, *recommended*. |
47
+ | [arcee-lite-Q4_K_S.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q4_K_S.gguf) | Q4_K_S | 1.07GB | false | Slightly lower quality with more space savings, *recommended*. |
48
+ | [arcee-lite-IQ4_XS.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-IQ4_XS.gguf) | IQ4_XS | 1.02GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
49
+ | [arcee-lite-Q3_K_L.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q3_K_L.gguf) | Q3_K_L | 0.98GB | false | Lower quality but usable, good for low RAM availability. |
50
+ | [arcee-lite-Q2_K_L.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-Q2_K_L.gguf) | Q2_K_L | 0.98GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
51
+ | [arcee-lite-IQ3_M.gguf](https://huggingface.co/bartowski/arcee-lite-GGUF/blob/main/arcee-lite-IQ3_M.gguf) | IQ3_M | 0.88GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
52
+
53
+ ## Embed/output weights
54
+
55
+ Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.
56
+
57
+ Some say that this improves the quality, others don't notice any difference. If you use these models PLEASE COMMENT with your findings. I would like feedback that these are actually used and useful so I don't keep uploading quants no one is using.
58
+
59
+ Thanks!
60
+
61
+ ## Credits
62
+
63
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
64
+
65
+ Thank you ZeroWw for the inspiration to experiment with embed/output
66
+
67
+ ## Downloading using huggingface-cli
68
+
69
+ First, make sure you have hugginface-cli installed:
70
+
71
+ ```
72
+ pip install -U "huggingface_hub[cli]"
73
+ ```
74
+
75
+ Then, you can target the specific file you want:
76
+
77
+ ```
78
+ huggingface-cli download bartowski/arcee-lite-GGUF --include "arcee-lite-Q4_K_M.gguf" --local-dir ./
79
+ ```
80
+
81
+ If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
82
+
83
+ ```
84
+ huggingface-cli download bartowski/arcee-lite-GGUF --include "arcee-lite-Q8_0/*" --local-dir ./
85
+ ```
86
+
87
+ You can either specify a new local-dir (arcee-lite-Q8_0) or download them all in place (./)
88
+
89
+ ## Which file should I choose?
90
+
91
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
92
+
93
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
94
+
95
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
96
+
97
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
98
+
99
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
100
+
101
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
102
+
103
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
104
+
105
+ [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
106
+
107
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
108
+
109
+ These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
110
+
111
+ The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
112
+
113
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
114
+
arcee-lite-IQ3_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87693ddf5c571cecb3d7f726e3475c58827e2de53754d086a4574c2fa0f0478a
3
+ size 876939328
arcee-lite-IQ4_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38388ccb08cb2b5c2409899d07f56f06b328dcce0c52c26886a3cebefe5abee6
3
+ size 1019708992
arcee-lite-Q2_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60275bdea193206515d178331688059d8d61ddd1119e31fe71fdbe2f155fa76a
3
+ size 980782144
arcee-lite-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39b6dbb4bc61e3183594d8a6e97bc032e8e5d5221f5ebda5391337ca757d3360
3
+ size 980438080
arcee-lite-Q3_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89f28e311d4afa8ccc8bad71e9ba1a763c8e2edf0b5b8d8869949114d40b7e10
3
+ size 1184640064
arcee-lite-Q4_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af5ec127de25fe1665de6e895eb7fc62267af92eda0a92742d91cac3fcb3af44
3
+ size 1290525760
arcee-lite-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38ee85a65b1a5d501fd8b64487763dcf8716d56f8fb7dece8e623b640f268bb8
3
+ size 1117318720
arcee-lite-Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9756f3889d0bf9f99eea4a426042c41cbe45bcb5d0b81059d2e53684d2e2d76
3
+ size 1071582784
arcee-lite-Q5_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b138ea5eb1323a98011a2d63914b091c613a4428f9ccfd723f5d14094de43a1f
3
+ size 1429527616
arcee-lite-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cff88b1fc80a27f46cd30770d710457cfbbbe2755c27ca43b473583f70fe0d0
3
+ size 1285492288
arcee-lite-Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:066cec5a6ab608e0ae143216f8ef84663d8036a89aa97da71d67c078cad5475a
3
+ size 1259171392
arcee-lite-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93b7caeef8256fdd0234a2ad4e79ced357e5f47eb11fc34aee1f124af99da926
3
+ size 1464176704
arcee-lite-Q6_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2f42b0c8e025bb95f79a3578bb51bc608fa9a83ab8e68a4fe3bb8b19cb1641a
3
+ size 1577217088
arcee-lite-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc36338440379fdfc875538405ba833dde59757791ccbaffb0b356acb49cb316
3
+ size 1894530112
arcee-lite-f32.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2221a4df072073548cb8e613e447c6629d3f5fc0b3970154a5a8db724e6e23a2
3
+ size 7114300224
arcee-lite.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bee4af11071ed8fbc2cf1b12337dbbdd7d30174499927e66d6ab2c38a5791572
3
+ size 2042214