---
library_name: peft
base_model: NousResearch/CodeLlama-7b-hf-flash
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 23c1d3fe-0c98-44fc-aece-b8eadcfbdb27
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-7b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 97fa2c1fc1c81cc5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/97fa2c1fc1c81cc5_train_data.json
type:
field_instruction: text
field_output: label_text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/23c1d3fe-0c98-44fc-aece-b8eadcfbdb27
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/97fa2c1fc1c81cc5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token:
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 23c1d3fe-0c98-44fc-aece-b8eadcfbdb27
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 23c1d3fe-0c98-44fc-aece-b8eadcfbdb27
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
```
# 23c1d3fe-0c98-44fc-aece-b8eadcfbdb27
This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3349
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0059 | 1 | 8.0095 |
| 31.8204 | 0.0293 | 5 | 7.0160 |
| 21.4367 | 0.0586 | 10 | 3.3853 |
| 7.8936 | 0.0878 | 15 | 1.4027 |
| 4.3689 | 0.1171 | 20 | 0.8026 |
| 2.5484 | 0.1464 | 25 | 0.6136 |
| 2.319 | 0.1757 | 30 | 0.4831 |
| 2.2084 | 0.2050 | 35 | 0.4224 |
| 1.5966 | 0.2343 | 40 | 0.3683 |
| 1.0295 | 0.2635 | 45 | 0.3390 |
| 1.0625 | 0.2928 | 50 | 0.3349 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1