--- library_name: peft license: apache-2.0 base_model: echarlaix/tiny-random-PhiForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: ee1dcdaf-4c63-4037-a8dd-e9d476c5a849 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: echarlaix/tiny-random-PhiForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - da9e86118b09e5a5_train_data.json ds_type: json field: question path: /workspace/input_data/da9e86118b09e5a5_train_data.json type: completion debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: ardaspear/ee1dcdaf-4c63-4037-a8dd-e9d476c5a849 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 72GB max_steps: 100 micro_batch_size: 4 mlflow_experiment_name: /tmp/da9e86118b09e5a5_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: ee1dcdaf-4c63-4037-a8dd-e9d476c5a849 wandb_project: Gradients-On-Two wandb_run: your_name wandb_runid: ee1dcdaf-4c63-4037-a8dd-e9d476c5a849 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# ee1dcdaf-4c63-4037-a8dd-e9d476c5a849 This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0051 | 1 | 6.9396 | | 6.933 | 0.0459 | 9 | 6.9278 | | 6.9044 | 0.0918 | 18 | 6.8975 | | 6.8733 | 0.1378 | 27 | 6.8667 | | 6.8474 | 0.1837 | 36 | 6.8465 | | 6.8412 | 0.2296 | 45 | 6.8371 | | 6.8328 | 0.2755 | 54 | 6.8328 | | 6.8329 | 0.3214 | 63 | 6.8303 | | 6.8278 | 0.3673 | 72 | 6.8288 | | 6.8312 | 0.4133 | 81 | 6.8278 | | 6.8293 | 0.4592 | 90 | 6.8275 | | 6.8296 | 0.5051 | 99 | 6.8274 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1