File size: 2,750 Bytes
493aa40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
from urllib.request import urlopen
from io import BytesIO
import soundfile as sf
import numpy as np

# Load the TTS model from the Hugging Face Hub
model_name = "arham061/speecht5_finetuned_voxpopuli_nl"  # Replace with your actual model name
model = Wav2Vec2ForCTC.from_pretrained(model_name)
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)

# Buckwalter to Unicode mapping
buck2uni = {
    u"\u0627": "A",
    u"\u0675": "A",
    u"\u0673": "A",
    u"\u0630": "A",
    u"\u0622": "AA",
    u"\u0628": "B",
    u"\u067E": "P",
    u"\u062A": "T",
    u"\u0637": "T",
    u"\u0679": "T",
    u"\u062C": "J",
    u"\u0633": "S",
    u"\u062B": "S",
    u"\u0635": "S",
    u"\u0686": "CH",
    u"\u062D": "H",
    u"\u0647": "H",
    u"\u0629": "H",
    u"\u06DF": "H",
    u"\u062E": "KH",
    u"\u062F": "D",
    u"\u0688": "D",
    u"\u0630": "Z",
    u"\u0632": "Z",
    u"\u0636": "Z",
    u"\u0638": "Z",
    u"\u068E": "Z",
    u"\u0631": "R",
    u"\u0691": "R",
    u"\u0634": "SH",
    u"\u063A": "GH",
    u"\u0641": "F",
    u"\u06A9": "K",
    u"\u0642": "K",
    u"\u06AF": "G",
    u"\u0644": "L",
    u"\u0645": "M",
    u"\u0646": "N",
    u"\u06BA": "N",
    u"\u0648": "O",
    u"\u0649": "Y",
    u"\u0626": "Y",
    u"\u06CC": "Y",
    u"\u06D2": "E",
    u"\u06C1": "H",
    u"\u064A": "E",
    u"\u06C2": "AH",
    u"\u06BE": "H",
    u"\u0639": "A",
    u"\u0643": "K",
    u"\u0621": "A",
    u"\u0624": "O",
    u"\u060C": "",  # separator ulta comma
}

def transString(string, reverse=0):
    """Given a Unicode string, transliterate into Buckwalter. To go from
    Buckwalter back to Unicode, set reverse=1"""
    for k, v in buck2uni.items():
        if not reverse:
            string = string.replace(k, v)
        else:
            string = string.replace(v, k)
    return string


def generate_audio(text):
    # Convert input text to Roman Urdu
    roman_urdu = transString(text)

    # Tokenize the input text
    inputs = tokenizer(roman_urdu, return_tensors="pt").input_values

    # Generate speech from the model
    with torch.no_grad():
        logits = model(inputs).logits

    # Convert logits to audio waveform
    predicted_ids = torch.argmax(logits, dim=-1)
    audio = tokenizer.decode(predicted_ids[0], skip_special_tokens=True)

    return audio


# Example usage
def main():
    # Get input text in Urdu
    input_text_urdu = input("Enter text in Urdu: ")

    # Generate audio
    audio_output = generate_audio(input_text_urdu)

    # Save audio as a .wav file
    sf.write("output.wav", audio_output, samplerate=22050)

    print("Audio generated and saved as 'output.wav'")


if __name__ == "__main__":
    main()