File size: 1,941 Bytes
d85d478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: EleutherAI/pythia-2.8b
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mary-snyder-paleturquoise
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mary-snyder-paleturquoise

This model is a fine-tuned version of [EleutherAI/pythia-2.8b](https://huggingface.co/EleutherAI/pythia-2.8b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 8.1016
- Accuracy: 0.6

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 24
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.1932        | 8.5561  | 400  | 4.5586          | 0.6      |
| 0.0061        | 17.1123 | 800  | 5.8789          | 0.6      |
| 0.008         | 25.6684 | 1200 | 8.5             | 0.5      |
| 0.0018        | 34.2246 | 1600 | 4.4258          | 0.5      |
| 0.0437        | 42.7807 | 2000 | 7.6797          | 0.5      |
| 0.0152        | 51.3369 | 2400 | 8.1016          | 0.6      |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.1.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1