--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - stillerman/libristutter-4.7k metrics: - wer model-index: - name: Whisper Large V3 Stutter - Ariel Cerda results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Libristutter 4.7k type: stillerman/libristutter-4.7k args: 'config: en, split: test' metrics: - name: Wer type: wer value: 18.279313632030505 --- # Whisper Large V3 Stutter - Ariel Cerda This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Libristutter 4.7k dataset. It achieves the following results on the evaluation set: - Loss: 0.4938 - Wer: 18.2793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0354 | 3.7453 | 1000 | 0.3009 | 18.2972 | | 0.0028 | 7.4906 | 2000 | 0.4106 | 16.5157 | | 0.0004 | 11.2360 | 3000 | 0.4474 | 20.5076 | | 0.0002 | 14.9813 | 4000 | 0.4774 | 17.5941 | | 0.0001 | 18.7266 | 5000 | 0.4938 | 18.2793 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1