File size: 2,440 Bytes
6f6e010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: mit
tags:
- generated_from_trainer
datasets:
- autextification2023
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: ia-detection-roberta-base
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: autextification2023
      type: autextification2023
      config: detection_en
      split: train
      args: detection_en
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.512550384756321
    - name: F1
      type: f1
      value: 0.6777299981830295
    - name: Precision
      type: precision
      value: 0.512550384756321
    - name: Recall
      type: recall
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ia-detection-roberta-base

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the autextification2023 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6928
- Accuracy: 0.5126
- F1: 0.6777
- Precision: 0.5126
- Recall: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.7021        | 1.0   | 3808  | 0.6950          | 0.5052   | 0.0    | 0.0       | 0.0    |
| 0.6936        | 2.0   | 7616  | 0.6937          | 0.4948   | 0.6621 | 0.4948    | 1.0    |
| 0.692         | 3.0   | 11424 | 0.6936          | 0.5052   | 0.0    | 0.0       | 0.0    |
| 0.6988        | 4.0   | 15232 | 0.6952          | 0.4948   | 0.6621 | 0.4948    | 1.0    |
| 0.6951        | 5.0   | 19040 | 0.6931          | 0.5052   | 0.0    | 0.0       | 0.0    |


### Framework versions

- Transformers 4.26.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3