File size: 2,980 Bytes
27a1a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f239ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a1a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: emotion
      type: emotion
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9275
    - name: F1
      type: f1
      value: 0.9273822408882375
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: emotion
      type: emotion
      config: default
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.919
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.8882001804445858
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.919
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9194695149914663
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.857858142469294
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.919
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.919
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.8684381937860847
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.919
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.9182406234430719
      verified: true
    - name: loss
      type: loss
      value: 0.21632428467273712
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2237
- Accuracy: 0.9275
- F1: 0.9274

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8643        | 1.0   | 250  | 0.3324          | 0.9065   | 0.9025 |
| 0.2589        | 2.0   | 500  | 0.2237          | 0.9275   | 0.9274 |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3