Commit
·
c346b51
1
Parent(s):
69ff504
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -5.25 +/- 2.36
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45ea367f2b7f72b69e202c84db3287a447c0d60fdec6d4a9a171d44c64a54f9f
|
3 |
+
size 113632
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4f106bca60>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f4f106b4b40>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 16,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674587953904356509,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWV+wMAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAAaKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAA2DdNP2Kxg77Op86/9sfGPlczET6n/KE/99yLP7tqIr/yjiU/c06mPxmYVz9pebO/a3CvP/5BCb8ah4W/zzByP77v+j6Nlba/uDhAv5TP0T+MSBS/zr6BPxj8JD5hvog7XlnLv16lgT9lX4G/RNLFv6HNZj/iNSi/8Mq1vvQWhD+rJai/T9hwv6llpr9BCh++UhFgP20r9D6Dt6w/4TJ1vlaPX77my5c/Txqrv00lQD/xCco/LuM5PXpQjb9dFVc/lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAEAAAAAAABopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTyUaA5LEEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]]",
|
60 |
+
"desired_goal": "[[ 0.80163336 -0.2572127 -1.614496 ]\n [ 0.38824433 0.14179741 1.2655228 ]\n [ 1.0926808 -0.6344411 0.6467124 ]\n [ 1.2992691 0.8421646 -1.4021426 ]\n [ 1.3706182 -0.5361632 -1.0431855 ]\n [ 0.94605726 0.49011034 -1.4264389 ]\n [-0.75086546 1.6391473 -0.579232 ]\n [ 1.0136354 0.16111791 0.00417309]\n [-1.5886648 1.0128591 -1.0107237 ]\n [-1.5454793 0.90157515 -0.6570722 ]\n [-0.35506392 1.0319505 -1.3136495 ]\n [-0.9408006 -1.2999774 -0.15531255]\n [ 0.8752643 0.4768938 1.3493503 ]\n [-0.2394519 -0.21832022 1.18591 ]\n [-1.3367404 0.75056916 1.5784284 ]\n [ 0.04538267 -1.1040184 0.8401697 ]]",
|
61 |
+
"observation": "[[ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWV+wMAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAAqionPZ/crLzRSXw8wPbKPXDVkT2J/XI+MPzbvaYIgLyZWuk9BGwTPtzH1r3s7T8+gn96vS81Nb3FR9I8LErpvUfQtj1uXe89QCINPXZzCj405hY+zNEkPOWW571J4Y49/js5vdJY2z3csj8++268vQblBL7jm1c+Y7IHPl6WWL2Z/3k+et37vWCjvj1QzrQ97GXkva+hhb3JO9M9MwYdPPf1zT2AFSk+Kt2fvTt+br2GCjw9Lv0MPaQY1D0Tv0Q+lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LEEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.04081217 -0.02110129 0.01539846]\n [ 0.09910345 0.07120788 0.23729528]\n [-0.1074146 -0.01562912 0.11394233]\n [ 0.14396673 -0.10487339 0.18743104]\n [-0.06115676 -0.04424017 0.02566899]\n [-0.113911 0.08926445 0.11687742]\n [ 0.03445649 0.13520607 0.14736253]\n [ 0.01005979 -0.11308078 0.06976563]\n [-0.04522323 0.10710301 0.18720573]\n [-0.09200855 -0.1297799 0.2105556 ]\n [ 0.13251643 -0.05287778 0.24413909]\n [-0.12298103 0.09308505 0.08828413]\n [-0.11152253 -0.06524979 0.10314137]\n [ 0.009584 0.1005668 0.16512108]\n [-0.07805856 -0.05822585 0.04590847]\n [ 0.03442114 0.10356262 0.19213514]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWyTtRh+TB8CUhpRSlIwBbJRLMowBdJRHQKGrGsasIVx1fZQoaAZoCWgPQwg4SfPHtDYBwJSGlFKUaBVLMmgWR0ChqtagdwNtdX2UKGgGaAloD0MIY+5aQj4IDMCUhpRSlGgVSzJoFkdAoaqQYk3S8nV9lChoBmgJaA9DCFQ2rKksqgTAlIaUUpRoFUsyaBZHQKGqSEeQuEp1fZQoaAZoCWgPQwimRX2SO1wSwJSGlFKUaBVLMmgWR0ChssME7nxKdX2UKGgGaAloD0MISdkiaTdqGMCUhpRSlGgVSzJoFkdAobKC9h7VrnV9lChoBmgJaA9DCL+ByY0iyxTAlIaUUpRoFUsyaBZHQKGyQTJQtSR1fZQoaAZoCWgPQwgZcmw9Q7gawJSGlFKUaBVLMmgWR0Chsf5aNdZ8dX2UKGgGaAloD0MIh/nyAuyjBsCUhpRSlGgVSzJoFkdAobGxL/S6UnV9lChoBmgJaA9DCJiiXBq/8PK/lIaUUpRoFUsyaBZHQKGxcNEw35x1fZQoaAZoCWgPQwiXj6Skh4EPwJSGlFKUaBVLMmgWR0ChsTAKnei0dX2UKGgGaAloD0MIs0KR7ueUD8CUhpRSlGgVSzJoFkdAobDrtPYWcnV9lChoBmgJaA9DCITTghd9LSHAlIaUUpRoFUsyaBZHQKGwpbQkX1t1fZQoaAZoCWgPQwgJF/IIbqQPwJSGlFKUaBVLMmgWR0ChsGSwW3z+dX2UKGgGaAloD0MIb6DAO/kEHMCUhpRSlGgVSzJoFkdAobAeapgkT3V9lChoBmgJaA9DCCV0l8RZQRLAlIaUUpRoFUsyaBZHQKGvyZOSGJx1fZQoaAZoCWgPQwg8o61KIrv6v5SGlFKUaBVLMmgWR0Chr4Wwu/UOdX2UKGgGaAloD0MIcqjfha0ZBsCUhpRSlGgVSzJoFkdAoa9BIWgvlHV9lChoBmgJaA9DCFoSoKaW/R3AlIaUUpRoFUsyaBZHQKGu+khRqGl1fZQoaAZoCWgPQwjs+3CQEGUCwJSGlFKUaBVLMmgWR0ChrrKASWZ7dX2UKGgGaAloD0MIWdx/ZDqUBcCUhpRSlGgVSzJoFkdAobbCbpeNUHV9lChoBmgJaA9DCK3cC8wKpQ/AlIaUUpRoFUsyaBZHQKG2glk6Lfl1fZQoaAZoCWgPQwjKN9vcmF76v5SGlFKUaBVLMmgWR0ChtkB0ZFXrdX2UKGgGaAloD0MIfT81XrpJ+r+UhpRSlGgVSzJoFkdAobX9+I/JNnV9lChoBmgJaA9DCEjBU8iVegfAlIaUUpRoFUsyaBZHQKG1r/mT1TR1fZQoaAZoCWgPQwi2LF+X4T/6v5SGlFKUaBVLMmgWR0ChtW/7BO58dX2UKGgGaAloD0MIdsO2RZkdFcCUhpRSlGgVSzJoFkdAobUvDJlrdnV9lChoBmgJaA9DCG8O12oP+/u/lIaUUpRoFUsyaBZHQKG06qvNeMR1fZQoaAZoCWgPQwi3JAfsagIZwJSGlFKUaBVLMmgWR0ChtKSg5BC2dX2UKGgGaAloD0MI6EzaVN3jAsCUhpRSlGgVSzJoFkdAobRjwF1SwXV9lChoBmgJaA9DCK/uWGyTCg3AlIaUUpRoFUsyaBZHQKG0HWe6I311fZQoaAZoCWgPQwgZyLPLt04UwJSGlFKUaBVLMmgWR0Chs8iQLeANdX2UKGgGaAloD0MItcAeEyntFMCUhpRSlGgVSzJoFkdAobOEeXAuZnV9lChoBmgJaA9DCE9AE2HDkwfAlIaUUpRoFUsyaBZHQKGzP+98JD51fZQoaAZoCWgPQwiInL6er1n1v5SGlFKUaBVLMmgWR0ChsvkkrwvydX2UKGgGaAloD0MIiPccWI5wFMCUhpRSlGgVSzJoFkdAobKwwudwvXV9lChoBmgJaA9DCHZPHhZqLQvAlIaUUpRoFUsyaBZHQKG6yRZlnRN1fZQoaAZoCWgPQwgYfJqTF5npv5SGlFKUaBVLMmgWR0Chuoju8brDdX2UKGgGaAloD0MI3Siy1lBKF8CUhpRSlGgVSzJoFkdAobpHJJXhfnV9lChoBmgJaA9DCPmekQiNYPy/lIaUUpRoFUsyaBZHQKG6BE87p3Z1fZQoaAZoCWgPQwhH5LuUukQDwJSGlFKUaBVLMmgWR0ChubZmyxA0dX2UKGgGaAloD0MIAmN9A5NbGcCUhpRSlGgVSzJoFkdAobl2RzRx+HV9lChoBmgJaA9DCDbOpiOA2/y/lIaUUpRoFUsyaBZHQKG5Ncwg1WN1fZQoaAZoCWgPQwg1tAHYgJgSwJSGlFKUaBVLMmgWR0ChuPGCI1tPdX2UKGgGaAloD0MI8bkT7L/+FcCUhpRSlGgVSzJoFkdAobirwhGH6HV9lChoBmgJaA9DCMehfhe29hLAlIaUUpRoFUsyaBZHQKG4auTzNEB1fZQoaAZoCWgPQwj04O6s3dYBwJSGlFKUaBVLMmgWR0ChuCRvWH1wdX2UKGgGaAloD0MINs6mI4D7GsCUhpRSlGgVSzJoFkdAobfPfwZwXXV9lChoBmgJaA9DCBCzl22nDQHAlIaUUpRoFUsyaBZHQKG3i5BkZrJ1fZQoaAZoCWgPQwgq4nSSrS73v5SGlFKUaBVLMmgWR0Cht0bor4FidX2UKGgGaAloD0MIwkzbv7KSDMCUhpRSlGgVSzJoFkdAobcAEB8x9HV9lChoBmgJaA9DCPfHe9XKFBzAlIaUUpRoFUsyaBZHQKG2t48EFGJ1fZQoaAZoCWgPQwjoZn+g3FYBwJSGlFKUaBVLMmgWR0ChvuAZsKsudX2UKGgGaAloD0MIDHOCNjkUIMCUhpRSlGgVSzJoFkdAob6f/zasZHV9lChoBmgJaA9DCK/NxkrMkwzAlIaUUpRoFUsyaBZHQKG+XkWAPNF1fZQoaAZoCWgPQwjD2EKQgxL5v5SGlFKUaBVLMmgWR0Chvhwh4dIYdX2UKGgGaAloD0MIZryt9NqME8CUhpRSlGgVSzJoFkdAob3OgOBlMHV9lChoBmgJaA9DCBV0e0ljpBfAlIaUUpRoFUsyaBZHQKG9jo5ggHN1fZQoaAZoCWgPQwip+L8jKmQawJSGlFKUaBVLMmgWR0ChvU207bL2dX2UKGgGaAloD0MIKxVUVP2qDsCUhpRSlGgVSzJoFkdAob0JVIZqEnV9lChoBmgJaA9DCP8+48KBYBvAlIaUUpRoFUsyaBZHQKG8w0w8GLV1fZQoaAZoCWgPQwgBo8ubw5UKwJSGlFKUaBVLMmgWR0ChvIJ5eJHidX2UKGgGaAloD0MIfuTWpNsSBMCUhpRSlGgVSzJoFkdAobw8Gkep43V9lChoBmgJaA9DCIm3zr9ddh7AlIaUUpRoFUsyaBZHQKG750+1Sfl1fZQoaAZoCWgPQwiKcmn8wksCwJSGlFKUaBVLMmgWR0Chu6N/4IrwdX2UKGgGaAloD0MIgSOBBps6AMCUhpRSlGgVSzJoFkdAobtfEbYK6XV9lChoBmgJaA9DCDl+qDRiBgfAlIaUUpRoFUsyaBZHQKG7GF6iTMd1fZQoaAZoCWgPQwit9xvtuGHtv5SGlFKUaBVLMmgWR0Chus/pljEvdX2UKGgGaAloD0MI+IxEaAR7B8CUhpRSlGgVSzJoFkdAocMOoNutOnV9lChoBmgJaA9DCMB7R40JgRbAlIaUUpRoFUsyaBZHQKHCzn8Kohp1fZQoaAZoCWgPQwjv5xTkZ7MTwJSGlFKUaBVLMmgWR0ChwozdLxqgdX2UKGgGaAloD0MIl1eut83UCcCUhpRSlGgVSzJoFkdAocJKEWZZ0XV9lChoBmgJaA9DCJBpbRrbqwnAlIaUUpRoFUsyaBZHQKHB+/SH/Ll1fZQoaAZoCWgPQwgQkZp2Me0GwJSGlFKUaBVLMmgWR0ChwbuLzf78dX2UKGgGaAloD0MIvXDnwkj/GMCUhpRSlGgVSzJoFkdAocF6wbEP2HV9lChoBmgJaA9DCENXIlD9wx3AlIaUUpRoFUsyaBZHQKHBNm5lOGl1fZQoaAZoCWgPQwgOgo5WtaT3v5SGlFKUaBVLMmgWR0ChwPBbOeJ6dX2UKGgGaAloD0MIkuumlNeqHcCUhpRSlGgVSzJoFkdAocCvf/FR53V9lChoBmgJaA9DCHJTA83nvAHAlIaUUpRoFUsyaBZHQKHAaR8MNMJ1fZQoaAZoCWgPQwjOUrKchFIZwJSGlFKUaBVLMmgWR0ChwBQ2dd3TdX2UKGgGaAloD0MISkG3lzRGBcCUhpRSlGgVSzJoFkdAob/Qa3qiXnV9lChoBmgJaA9DCFIKur2kESDAlIaUUpRoFUsyaBZHQKG/i9Iwudx1fZQoaAZoCWgPQwhbXOMz2R8ZwJSGlFKUaBVLMmgWR0Chv0UDlo12dX2UKGgGaAloD0MI2bPnMjX5EsCUhpRSlGgVSzJoFkdAob78bHZK4HV9lChoBmgJaA9DCBwLCoMyTQnAlIaUUpRoFUsyaBZHQKHHT66asp51fZQoaAZoCWgPQwhoIQGjy6sdwJSGlFKUaBVLMmgWR0Chxw+JYT0ydX2UKGgGaAloD0MIgIEgQIYO+b+UhpRSlGgVSzJoFkdAocbNuDSPVHV9lChoBmgJaA9DCA9Dq5MzVP+/lIaUUpRoFUsyaBZHQKHGiwWWQfZ1fZQoaAZoCWgPQwgeNSbEXBIbwJSGlFKUaBVLMmgWR0Chxj0vf0mMdX2UKGgGaAloD0MIE5m5wOWRAsCUhpRSlGgVSzJoFkdAocX9A9mpVHV9lChoBmgJaA9DCHxFt17T0xTAlIaUUpRoFUsyaBZHQKHFvDWsijd1fZQoaAZoCWgPQwhYHqSnyPEYwJSGlFKUaBVLMmgWR0ChxXgZsKsudX2UKGgGaAloD0MIWwwepn0TAcCUhpRSlGgVSzJoFkdAocUyCz1K5HV9lChoBmgJaA9DCD/jwoGQDAPAlIaUUpRoFUsyaBZHQKHE8QtjCpF1fZQoaAZoCWgPQwghOgSOBJoYwJSGlFKUaBVLMmgWR0ChxKqslsxgdX2UKGgGaAloD0MI0R+aeXIdHsCUhpRSlGgVSzJoFkdAocRV1KXfInV9lChoBmgJaA9DCBjqsMItvwbAlIaUUpRoFUsyaBZHQKHEEd92HL11fZQoaAZoCWgPQwgYBcHj2/sJwJSGlFKUaBVLMmgWR0Chw80tI066dX2UKGgGaAloD0MIyoy3lV57EMCUhpRSlGgVSzJoFkdAocOGRoysS3V9lChoBmgJaA9DCJQu/UtSmfO/lIaUUpRoFUsyaBZHQKHDPe4TbnJ1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 12500,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9717bf803b7109a1bbbf973a5eaab69bbf339d0b0e594877eccbaf73d6ebd04
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ead9828b945a591ef2e0adddb155badc8595e1f25ed70e4d3d8589b8b067f5a
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4f106bca60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4f106b4b40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674587953904356509, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV+wMAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAAaKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/aKXNPoHCCjtkPg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAA2DdNP2Kxg77Op86/9sfGPlczET6n/KE/99yLP7tqIr/yjiU/c06mPxmYVz9pebO/a3CvP/5BCb8ah4W/zzByP77v+j6Nlba/uDhAv5TP0T+MSBS/zr6BPxj8JD5hvog7XlnLv16lgT9lX4G/RNLFv6HNZj/iNSi/8Mq1vvQWhD+rJai/T9hwv6llpr9BCh++UhFgP20r9D6Dt6w/4TJ1vlaPX77my5c/Txqrv00lQD/xCco/LuM5PXpQjb9dFVc/lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAEAAAAAAABopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTxopc0+gcIKO2Q+Dz8hQKM6IgEbutgwPTyUaA5LEEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]\n [0.40165257 0.00211731 0.55954576]]", "desired_goal": "[[ 0.80163336 -0.2572127 -1.614496 ]\n [ 0.38824433 0.14179741 1.2655228 ]\n [ 1.0926808 -0.6344411 0.6467124 ]\n [ 1.2992691 0.8421646 -1.4021426 ]\n [ 1.3706182 -0.5361632 -1.0431855 ]\n [ 0.94605726 0.49011034 -1.4264389 ]\n [-0.75086546 1.6391473 -0.579232 ]\n [ 1.0136354 0.16111791 0.00417309]\n [-1.5886648 1.0128591 -1.0107237 ]\n [-1.5454793 0.90157515 -0.6570722 ]\n [-0.35506392 1.0319505 -1.3136495 ]\n [-0.9408006 -1.2999774 -0.15531255]\n [ 0.8752643 0.4768938 1.3493503 ]\n [-0.2394519 -0.21832022 1.18591 ]\n [-1.3367404 0.75056916 1.5784284 ]\n [ 0.04538267 -1.1040184 0.8401697 ]]", "observation": "[[ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]\n [ 0.40165257 0.00211731 0.55954576 0.0012455 -0.00059129 0.01154729]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV+wMAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAAqionPZ/crLzRSXw8wPbKPXDVkT2J/XI+MPzbvaYIgLyZWuk9BGwTPtzH1r3s7T8+gn96vS81Nb3FR9I8LErpvUfQtj1uXe89QCINPXZzCj405hY+zNEkPOWW571J4Y49/js5vdJY2z3csj8++268vQblBL7jm1c+Y7IHPl6WWL2Z/3k+et37vWCjvj1QzrQ97GXkva+hhb3JO9M9MwYdPPf1zT2AFSk+Kt2fvTt+br2GCjw9Lv0MPaQY1D0Tv0Q+lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LEEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04081217 -0.02110129 0.01539846]\n [ 0.09910345 0.07120788 0.23729528]\n [-0.1074146 -0.01562912 0.11394233]\n [ 0.14396673 -0.10487339 0.18743104]\n [-0.06115676 -0.04424017 0.02566899]\n [-0.113911 0.08926445 0.11687742]\n [ 0.03445649 0.13520607 0.14736253]\n [ 0.01005979 -0.11308078 0.06976563]\n [-0.04522323 0.10710301 0.18720573]\n [-0.09200855 -0.1297799 0.2105556 ]\n [ 0.13251643 -0.05287778 0.24413909]\n [-0.12298103 0.09308505 0.08828413]\n [-0.11152253 -0.06524979 0.10314137]\n [ 0.009584 0.1005668 0.16512108]\n [-0.07805856 -0.05822585 0.04590847]\n [ 0.03442114 0.10356262 0.19213514]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWyTtRh+TB8CUhpRSlIwBbJRLMowBdJRHQKGrGsasIVx1fZQoaAZoCWgPQwg4SfPHtDYBwJSGlFKUaBVLMmgWR0ChqtagdwNtdX2UKGgGaAloD0MIY+5aQj4IDMCUhpRSlGgVSzJoFkdAoaqQYk3S8nV9lChoBmgJaA9DCFQ2rKksqgTAlIaUUpRoFUsyaBZHQKGqSEeQuEp1fZQoaAZoCWgPQwimRX2SO1wSwJSGlFKUaBVLMmgWR0ChssME7nxKdX2UKGgGaAloD0MISdkiaTdqGMCUhpRSlGgVSzJoFkdAobKC9h7VrnV9lChoBmgJaA9DCL+ByY0iyxTAlIaUUpRoFUsyaBZHQKGyQTJQtSR1fZQoaAZoCWgPQwgZcmw9Q7gawJSGlFKUaBVLMmgWR0Chsf5aNdZ8dX2UKGgGaAloD0MIh/nyAuyjBsCUhpRSlGgVSzJoFkdAobGxL/S6UnV9lChoBmgJaA9DCJiiXBq/8PK/lIaUUpRoFUsyaBZHQKGxcNEw35x1fZQoaAZoCWgPQwiXj6Skh4EPwJSGlFKUaBVLMmgWR0ChsTAKnei0dX2UKGgGaAloD0MIs0KR7ueUD8CUhpRSlGgVSzJoFkdAobDrtPYWcnV9lChoBmgJaA9DCITTghd9LSHAlIaUUpRoFUsyaBZHQKGwpbQkX1t1fZQoaAZoCWgPQwgJF/IIbqQPwJSGlFKUaBVLMmgWR0ChsGSwW3z+dX2UKGgGaAloD0MIb6DAO/kEHMCUhpRSlGgVSzJoFkdAobAeapgkT3V9lChoBmgJaA9DCCV0l8RZQRLAlIaUUpRoFUsyaBZHQKGvyZOSGJx1fZQoaAZoCWgPQwg8o61KIrv6v5SGlFKUaBVLMmgWR0Chr4Wwu/UOdX2UKGgGaAloD0MIcqjfha0ZBsCUhpRSlGgVSzJoFkdAoa9BIWgvlHV9lChoBmgJaA9DCFoSoKaW/R3AlIaUUpRoFUsyaBZHQKGu+khRqGl1fZQoaAZoCWgPQwjs+3CQEGUCwJSGlFKUaBVLMmgWR0ChrrKASWZ7dX2UKGgGaAloD0MIWdx/ZDqUBcCUhpRSlGgVSzJoFkdAobbCbpeNUHV9lChoBmgJaA9DCK3cC8wKpQ/AlIaUUpRoFUsyaBZHQKG2glk6Lfl1fZQoaAZoCWgPQwjKN9vcmF76v5SGlFKUaBVLMmgWR0ChtkB0ZFXrdX2UKGgGaAloD0MIfT81XrpJ+r+UhpRSlGgVSzJoFkdAobX9+I/JNnV9lChoBmgJaA9DCEjBU8iVegfAlIaUUpRoFUsyaBZHQKG1r/mT1TR1fZQoaAZoCWgPQwi2LF+X4T/6v5SGlFKUaBVLMmgWR0ChtW/7BO58dX2UKGgGaAloD0MIdsO2RZkdFcCUhpRSlGgVSzJoFkdAobUvDJlrdnV9lChoBmgJaA9DCG8O12oP+/u/lIaUUpRoFUsyaBZHQKG06qvNeMR1fZQoaAZoCWgPQwi3JAfsagIZwJSGlFKUaBVLMmgWR0ChtKSg5BC2dX2UKGgGaAloD0MI6EzaVN3jAsCUhpRSlGgVSzJoFkdAobRjwF1SwXV9lChoBmgJaA9DCK/uWGyTCg3AlIaUUpRoFUsyaBZHQKG0HWe6I311fZQoaAZoCWgPQwgZyLPLt04UwJSGlFKUaBVLMmgWR0Chs8iQLeANdX2UKGgGaAloD0MItcAeEyntFMCUhpRSlGgVSzJoFkdAobOEeXAuZnV9lChoBmgJaA9DCE9AE2HDkwfAlIaUUpRoFUsyaBZHQKGzP+98JD51fZQoaAZoCWgPQwiInL6er1n1v5SGlFKUaBVLMmgWR0ChsvkkrwvydX2UKGgGaAloD0MIiPccWI5wFMCUhpRSlGgVSzJoFkdAobKwwudwvXV9lChoBmgJaA9DCHZPHhZqLQvAlIaUUpRoFUsyaBZHQKG6yRZlnRN1fZQoaAZoCWgPQwgYfJqTF5npv5SGlFKUaBVLMmgWR0Chuoju8brDdX2UKGgGaAloD0MI3Siy1lBKF8CUhpRSlGgVSzJoFkdAobpHJJXhfnV9lChoBmgJaA9DCPmekQiNYPy/lIaUUpRoFUsyaBZHQKG6BE87p3Z1fZQoaAZoCWgPQwhH5LuUukQDwJSGlFKUaBVLMmgWR0ChubZmyxA0dX2UKGgGaAloD0MIAmN9A5NbGcCUhpRSlGgVSzJoFkdAobl2RzRx+HV9lChoBmgJaA9DCDbOpiOA2/y/lIaUUpRoFUsyaBZHQKG5Ncwg1WN1fZQoaAZoCWgPQwg1tAHYgJgSwJSGlFKUaBVLMmgWR0ChuPGCI1tPdX2UKGgGaAloD0MI8bkT7L/+FcCUhpRSlGgVSzJoFkdAobirwhGH6HV9lChoBmgJaA9DCMehfhe29hLAlIaUUpRoFUsyaBZHQKG4auTzNEB1fZQoaAZoCWgPQwj04O6s3dYBwJSGlFKUaBVLMmgWR0ChuCRvWH1wdX2UKGgGaAloD0MINs6mI4D7GsCUhpRSlGgVSzJoFkdAobfPfwZwXXV9lChoBmgJaA9DCBCzl22nDQHAlIaUUpRoFUsyaBZHQKG3i5BkZrJ1fZQoaAZoCWgPQwgq4nSSrS73v5SGlFKUaBVLMmgWR0Cht0bor4FidX2UKGgGaAloD0MIwkzbv7KSDMCUhpRSlGgVSzJoFkdAobcAEB8x9HV9lChoBmgJaA9DCPfHe9XKFBzAlIaUUpRoFUsyaBZHQKG2t48EFGJ1fZQoaAZoCWgPQwjoZn+g3FYBwJSGlFKUaBVLMmgWR0ChvuAZsKsudX2UKGgGaAloD0MIDHOCNjkUIMCUhpRSlGgVSzJoFkdAob6f/zasZHV9lChoBmgJaA9DCK/NxkrMkwzAlIaUUpRoFUsyaBZHQKG+XkWAPNF1fZQoaAZoCWgPQwjD2EKQgxL5v5SGlFKUaBVLMmgWR0Chvhwh4dIYdX2UKGgGaAloD0MIZryt9NqME8CUhpRSlGgVSzJoFkdAob3OgOBlMHV9lChoBmgJaA9DCBV0e0ljpBfAlIaUUpRoFUsyaBZHQKG9jo5ggHN1fZQoaAZoCWgPQwip+L8jKmQawJSGlFKUaBVLMmgWR0ChvU207bL2dX2UKGgGaAloD0MIKxVUVP2qDsCUhpRSlGgVSzJoFkdAob0JVIZqEnV9lChoBmgJaA9DCP8+48KBYBvAlIaUUpRoFUsyaBZHQKG8w0w8GLV1fZQoaAZoCWgPQwgBo8ubw5UKwJSGlFKUaBVLMmgWR0ChvIJ5eJHidX2UKGgGaAloD0MIfuTWpNsSBMCUhpRSlGgVSzJoFkdAobw8Gkep43V9lChoBmgJaA9DCIm3zr9ddh7AlIaUUpRoFUsyaBZHQKG750+1Sfl1fZQoaAZoCWgPQwiKcmn8wksCwJSGlFKUaBVLMmgWR0Chu6N/4IrwdX2UKGgGaAloD0MIgSOBBps6AMCUhpRSlGgVSzJoFkdAobtfEbYK6XV9lChoBmgJaA9DCDl+qDRiBgfAlIaUUpRoFUsyaBZHQKG7GF6iTMd1fZQoaAZoCWgPQwit9xvtuGHtv5SGlFKUaBVLMmgWR0Chus/pljEvdX2UKGgGaAloD0MI+IxEaAR7B8CUhpRSlGgVSzJoFkdAocMOoNutOnV9lChoBmgJaA9DCMB7R40JgRbAlIaUUpRoFUsyaBZHQKHCzn8Kohp1fZQoaAZoCWgPQwjv5xTkZ7MTwJSGlFKUaBVLMmgWR0ChwozdLxqgdX2UKGgGaAloD0MIl1eut83UCcCUhpRSlGgVSzJoFkdAocJKEWZZ0XV9lChoBmgJaA9DCJBpbRrbqwnAlIaUUpRoFUsyaBZHQKHB+/SH/Ll1fZQoaAZoCWgPQwgQkZp2Me0GwJSGlFKUaBVLMmgWR0ChwbuLzf78dX2UKGgGaAloD0MIvXDnwkj/GMCUhpRSlGgVSzJoFkdAocF6wbEP2HV9lChoBmgJaA9DCENXIlD9wx3AlIaUUpRoFUsyaBZHQKHBNm5lOGl1fZQoaAZoCWgPQwgOgo5WtaT3v5SGlFKUaBVLMmgWR0ChwPBbOeJ6dX2UKGgGaAloD0MIkuumlNeqHcCUhpRSlGgVSzJoFkdAocCvf/FR53V9lChoBmgJaA9DCHJTA83nvAHAlIaUUpRoFUsyaBZHQKHAaR8MNMJ1fZQoaAZoCWgPQwjOUrKchFIZwJSGlFKUaBVLMmgWR0ChwBQ2dd3TdX2UKGgGaAloD0MISkG3lzRGBcCUhpRSlGgVSzJoFkdAob/Qa3qiXnV9lChoBmgJaA9DCFIKur2kESDAlIaUUpRoFUsyaBZHQKG/i9Iwudx1fZQoaAZoCWgPQwhbXOMz2R8ZwJSGlFKUaBVLMmgWR0Chv0UDlo12dX2UKGgGaAloD0MI2bPnMjX5EsCUhpRSlGgVSzJoFkdAob78bHZK4HV9lChoBmgJaA9DCBwLCoMyTQnAlIaUUpRoFUsyaBZHQKHHT66asp51fZQoaAZoCWgPQwhoIQGjy6sdwJSGlFKUaBVLMmgWR0Chxw+JYT0ydX2UKGgGaAloD0MIgIEgQIYO+b+UhpRSlGgVSzJoFkdAocbNuDSPVHV9lChoBmgJaA9DCA9Dq5MzVP+/lIaUUpRoFUsyaBZHQKHGiwWWQfZ1fZQoaAZoCWgPQwgeNSbEXBIbwJSGlFKUaBVLMmgWR0Chxj0vf0mMdX2UKGgGaAloD0MIE5m5wOWRAsCUhpRSlGgVSzJoFkdAocX9A9mpVHV9lChoBmgJaA9DCHxFt17T0xTAlIaUUpRoFUsyaBZHQKHFvDWsijd1fZQoaAZoCWgPQwhYHqSnyPEYwJSGlFKUaBVLMmgWR0ChxXgZsKsudX2UKGgGaAloD0MIWwwepn0TAcCUhpRSlGgVSzJoFkdAocUyCz1K5HV9lChoBmgJaA9DCD/jwoGQDAPAlIaUUpRoFUsyaBZHQKHE8QtjCpF1fZQoaAZoCWgPQwghOgSOBJoYwJSGlFKUaBVLMmgWR0ChxKqslsxgdX2UKGgGaAloD0MI0R+aeXIdHsCUhpRSlGgVSzJoFkdAocRV1KXfInV9lChoBmgJaA9DCBjqsMItvwbAlIaUUpRoFUsyaBZHQKHEEd92HL11fZQoaAZoCWgPQwgYBcHj2/sJwJSGlFKUaBVLMmgWR0Chw80tI066dX2UKGgGaAloD0MIyoy3lV57EMCUhpRSlGgVSzJoFkdAocOGRoysS3V9lChoBmgJaA9DCJQu/UtSmfO/lIaUUpRoFUsyaBZHQKHDPe4TbnJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (327 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -5.248017217591405, "std_reward": 2.364962017089625, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T20:03:33.362044"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44e4c43e6a12014ace9c371af2d4a1e68628216d30a8fddc50f8b0f8e465bc2b
|
3 |
+
size 3056
|