File size: 4,970 Bytes
4f0a323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b02f94a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f0a323
 
 
 
 
 
 
b02f94a
4f0a323
 
 
 
 
 
 
b02f94a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f0a323
 
 
 
b02f94a
 
 
 
 
4f0a323
 
 
b02f94a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f0a323
 
 
b02f94a
 
4f0a323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
language:
- en
license: mit
base_model: prajjwal1/bert-tiny
tags:
- pytorch
- BertForTokenClassification
- named-entity-recognition
- roberta-base
- generated_from_trainer
metrics:
- recall
- precision
- f1
- accuracy
model-index:
- name: bert-tiny-ontonotes
  results:
    - task:
        type: token-classification
      metrics:
        - type: accuracy
          value: 0.9476
          name: accuracy
        - type: precision
          value: 0.6817
          name: precision
        - type: accuracy
          value: 0.7193
          name: recall
        - type: accuracy
          value: 0.7
          name: F1
datasets:
  - tner/ontonotes5
library_name: transformers
pipeline_tag: token-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-tiny-ontonotes

This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the [tner/ontonotes5](https://huggingface.co/datasets/tner/ontonotes5) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1917
- Recall: 0.7193
- Precision: 0.6817
- F1: 0.7000
- Accuracy: 0.9476

## How to use the Model

### Using pipeline

```python
from transformers import pipeline
import torch

# Initiate the pipeline
device = 0 if torch.cuda.is_available() else 'cpu'
ner = pipeline("token-classification", "arnabdhar/bert-tiny-ontonotes", device=device)

# use the pipeline
input_text = "My name is Clara and I live in Berkeley, California."
results = ner(input_text)
```


## Intended uses & limitations

This model is fine-tuned for **Named Entity Recognition** task and you can use the model as it is or can use this model as a base model for further fine tuning on your custom dataset.

The following entities were fine-tuned on:
CARDINAL, DATE, PERSON, NORP, GPE, LAW, PERCENT, ORDINAL, MONEY, WORK_OF_ART, FAC, TIME, QUANTITY, PRODUCT, LANGUAGE, ORG, LOC, EVENT


## Training and evaluation data

The dataset has 3 partitions, `train`, `validation` and `test`, all the 3 partitions were combined and then a 80:20 train-test split was made for finet uning process. The following `ID2LABEL` mapping was used.

```json
{
    "0": "O",
    "1": "B-CARDINAL",
    "2": "B-DATE",
    "3": "I-DATE",
    "4": "B-PERSON",
    "5": "I-PERSON",
    "6": "B-NORP",
    "7": "B-GPE",
    "8": "I-GPE",
    "9": "B-LAW",
    "10": "I-LAW",
    "11": "B-ORG",
    "12": "I-ORG",
    "13": "B-PERCENT",
    "14": "I-PERCENT",
    "15": "B-ORDINAL",
    "16": "B-MONEY",
    "17": "I-MONEY",
    "18": "B-WORK_OF_ART",
    "19": "I-WORK_OF_ART",
    "20": "B-FAC",
    "21": "B-TIME",
    "22": "I-CARDINAL",
    "23": "B-LOC",
    "24": "B-QUANTITY",
    "25": "I-QUANTITY",
    "26": "I-NORP",
    "27": "I-LOC",
    "28": "B-PRODUCT",
    "29": "I-TIME",
    "30": "B-EVENT",
    "31": "I-EVENT",
    "32": "I-FAC",
    "33": "B-LANGUAGE",
    "34": "I-PRODUCT",
    "35": "I-ORDINAL",
    "36": "I-LANGUAGE"
  }
```

## Training procedure

The model was finetuned on Google Colab with a __NVIDIA T4__ GPU with 15GB of VRAM. It took around 5 minutes to fine tune and evaluate the model with 6000 steps of total training steps. For more details, you can look into the [Weights & Biases](https://wandb.ai/2wb2ndur/NER-ontonotes/runs/d93imv8j/overview?workspace=user-2wb2ndur) log history.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 32
- eval_batch_size: 160
- seed: 75241309
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 6000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Recall | Precision | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:|
| 0.4283        | 0.31  | 600  | 0.3864          | 0.4561 | 0.4260    | 0.4405 | 0.9058   |
| 0.3214        | 0.63  | 1200 | 0.2865          | 0.5865 | 0.5485    | 0.5669 | 0.9265   |
| 0.2886        | 0.94  | 1800 | 0.2439          | 0.6432 | 0.6165    | 0.6295 | 0.9354   |
| 0.2511        | 1.25  | 2400 | 0.2233          | 0.6765 | 0.6250    | 0.6497 | 0.9389   |
| 0.2224        | 1.56  | 3000 | 0.2088          | 0.6878 | 0.6642    | 0.6758 | 0.9433   |
| 0.2181        | 1.88  | 3600 | 0.2001          | 0.7105 | 0.6684    | 0.6888 | 0.9451   |
| 0.215         | 2.19  | 4200 | 0.1954          | 0.7140 | 0.6795    | 0.6963 | 0.9469   |
| 0.1907        | 2.5   | 4800 | 0.1934          | 0.7169 | 0.6776    | 0.6967 | 0.9470   |
| 0.209         | 2.82  | 5400 | 0.1918          | 0.7185 | 0.6812    | 0.6994 | 0.9475   |
| 0.2073        | 3.13  | 6000 | 0.1917          | 0.7193 | 0.6817    | 0.7000 | 0.9476   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0