File size: 2,176 Bytes
f41decf 74a0694 7f7e5f7 aec94cb 7f7e5f7 c656caa 7f7e5f7 9308dda 7f7e5f7 f41decf 8b9d038 41ffa9a 8b9d038 bbd04f0 8b9d038 c656caa 8b9d038 f41decf 8b9d038 f41decf 8b9d038 f41decf 74a0694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: peft
tags:
- text-generation
license: apache-2.0
metrics:
- loss
language:
- en
widget:
- text: >
Below is an instruction that describes a task, paired with an input that
provides further context. Write a response that appropriately completes
the request.
### Instruction: Generate an SQL statement to add a row in the customers table where the columns are name, address, and city.
### Input: name = John, address = 123 Main Street, city = Winter Park
### Response:
inference:
parameters:
temperature: 0.1
max_new_tokens: 1024
---
## QLoRA weights using Llama-2-7b for the Code Alpaca Dataset
This model was fine-tuned using [Predibase](https://predibase.com/), the first low-code AI platform for engineers.
I fine-tuned base Llama-2-7b using LoRA with 4 bit quantization on a single T4 GPU, which cost approximately $3 to train
on Predibase.
Dataset and training parameters are borrowed from: https://github.com/sahil280114/codealpaca,
but all of these parameters including DeepSpeed can be directly used with [Ludwig](https://ludwig.ai/latest/), the open-source
toolkit for LLMs that Predibase is built on.
To use these weights:
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
config = PeftConfig.from_pretrained("arnavgrg/codealpaca-qlora")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
model = PeftModel.from_pretrained(model, "arnavgrg/codealpaca-qlora")
```
Prompt Template:
```
Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.
### Instruction: {instruction}
### Input: {input}
### Response:
```
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0 |