Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,157 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by
|
23 |
-
- **Model type:**
|
24 |
-
- **Language(s) (NLP):**
|
25 |
-
- **License:**
|
26 |
-
- **Finetuned from model
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
31 |
|
32 |
-
- **Repository:** [
|
33 |
-
- **
|
34 |
-
- **Demo
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
|
82 |
-
[
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
|
|
|
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
- **Training regime:**
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
|
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
109 |
#### Testing Data
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
|
121 |
#### Metrics
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
|
127 |
### Results
|
128 |
|
129 |
-
|
130 |
|
131 |
#### Summary
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
Carbon
|
146 |
|
147 |
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
|
155 |
### Model Architecture and Objective
|
156 |
|
157 |
-
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
|
171 |
-
## Citation
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
**BibTeX:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
-
|
198 |
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags: [qlora, peft, fine-tuning, javascript, causal-lm]
|
4 |
---
|
5 |
|
6 |
+
# Model Card for gemma-js-instruct-finetune
|
|
|
|
|
|
|
|
|
7 |
|
8 |
## Model Details
|
9 |
|
10 |
### Model Description
|
11 |
|
12 |
+
This is the model card for `gemma-js-instruct-finetune`, a fine-tuned version of the `gemma-2b-it` model. This fine-tuned model was trained to improve the performance of generating long-form, structured responses to JavaScript-related instructional tasks. The fine-tuning process used the QLoRA (Quantized Low-Rank Adaptation) method, enabling efficient parameter tuning on limited hardware resources.
|
13 |
|
14 |
+
- **Developed by:** Arnav Jain and collaborators
|
|
|
|
|
15 |
- **Funded by [optional]:** [More Information Needed]
|
16 |
+
- **Shared by:** [Arnav Jain](https://huggingface.co/arnavj007)
|
17 |
+
- **Model type:** Decoder-only causal language model
|
18 |
+
- **Language(s) (NLP):** English
|
19 |
+
- **License:** Apache 2.0
|
20 |
+
- **Finetuned from model:** [gemma-2b-it](https://huggingface.co/google/gemma-2b-it)
|
|
|
|
|
21 |
|
22 |
+
### Model Sources
|
23 |
|
24 |
+
- **Repository:** [gemma-js-instruct-finetune](https://huggingface.co/arnavj007/gemma-js-instruct-finetune)
|
25 |
+
- **Dataset:** [Evol-Instruct-JS-Code-500-v1](https://huggingface.co/datasets/pyto-p/Evol-Instruct-JS-Code-500-v1)
|
26 |
+
- **Demo:** [Weights & Biases Run](https://wandb.ai/arnavj007-24/huggingface/runs/718nwcab)
|
27 |
|
28 |
## Uses
|
29 |
|
|
|
|
|
30 |
### Direct Use
|
31 |
|
32 |
+
The model can be directly used for generating solutions to JavaScript programming tasks, creating instructional code snippets, and answering technical questions related to JavaScript programming.
|
33 |
|
34 |
+
### Downstream Use
|
35 |
|
36 |
+
This model can be further fine-tuned for specific programming domains, other languages, or instructional content generation tasks.
|
|
|
|
|
|
|
|
|
37 |
|
38 |
### Out-of-Scope Use
|
39 |
|
40 |
+
This model is not suitable for:
|
41 |
+
- Non-technical, general-purpose text generation
|
42 |
+
- Applications requiring real-time interaction with external systems
|
43 |
+
- Generating solutions for non-JavaScript programming tasks without additional fine-tuning
|
44 |
|
45 |
## Bias, Risks, and Limitations
|
46 |
|
|
|
|
|
|
|
|
|
47 |
### Recommendations
|
48 |
|
49 |
+
- Users should validate generated code for correctness and security.
|
50 |
+
- Be cautious of potential biases or inaccuracies in the dataset that could propagate into model outputs.
|
51 |
+
- Avoid using the model for sensitive or critical applications without thorough testing.
|
52 |
|
53 |
## How to Get Started with the Model
|
54 |
|
55 |
+
```python
|
56 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
57 |
+
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained("arnavj007/gemma-js-instruct-finetune")
|
59 |
+
model = AutoModelForCausalLM.from_pretrained("arnavj007/gemma-js-instruct-finetune")
|
60 |
+
|
61 |
+
def get_completion(query: str):
|
62 |
+
prompt = f"<start_of_turn>user {query}<end_of_turn>\n<start_of_turn>model"
|
63 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
64 |
+
outputs = model.generate(**inputs, max_new_tokens=1000)
|
65 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
66 |
|
67 |
+
response = get_completion("Create a function in JavaScript to calculate the factorial of a number.")
|
68 |
+
print(response)
|
69 |
+
```
|
70 |
|
71 |
## Training Details
|
72 |
|
73 |
### Training Data
|
74 |
|
75 |
+
The training dataset consisted of 500 JavaScript instructions paired with relevant outputs. These instructions focused on tasks like code snippets, algorithm implementations, and error-handling scenarios.
|
76 |
|
77 |
+
Dataset: [Evol-Instruct-JS-Code-500-v1](https://huggingface.co/datasets/pyto-p/Evol-Instruct-JS-Code-500-v1)
|
78 |
|
79 |
### Training Procedure
|
80 |
|
81 |
+
#### Preprocessing
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
- Instructions and outputs were formatted using a standardized prompt-response template.
|
84 |
+
- Data was tokenized using the Hugging Face tokenizer for `gemma-2b-it`.
|
85 |
|
86 |
#### Training Hyperparameters
|
87 |
|
88 |
+
- **Training regime:** QLoRA (Quantized Low-Rank Adaptation)
|
89 |
+
- **Batch size:** 1 per device
|
90 |
+
- **Gradient accumulation steps:** 4
|
91 |
+
- **Learning rate:** 2e-4
|
92 |
+
- **Training steps:** 100
|
93 |
+
- **Optimizer:** Paged AdamW (8-bit)
|
94 |
|
95 |
+
### Speeds, Sizes, Times
|
96 |
|
97 |
+
- Training runtime: ~1435 seconds
|
98 |
+
- Trainable parameters: 3% of the model (~78M)
|
99 |
|
100 |
## Evaluation
|
101 |
|
|
|
|
|
102 |
### Testing Data, Factors & Metrics
|
103 |
|
104 |
#### Testing Data
|
105 |
|
106 |
+
The test dataset consisted of 100 JavaScript instructions held out from the training set.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
#### Metrics
|
109 |
|
110 |
+
- Quality of generated code snippets
|
111 |
+
- Ability to handle complex prompts with multiple sub-tasks
|
|
|
112 |
|
113 |
### Results
|
114 |
|
115 |
+
The fine-tuned model demonstrated significant improvement in handling long prompts and generating structured code. It provided complete solutions for tasks like API creation with advanced features (e.g., caching, error handling).
|
116 |
|
117 |
#### Summary
|
118 |
|
119 |
+
Fine-tuning with QLoRA enabled robust performance improvements, making the model capable of generating detailed instructional responses.
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
## Environmental Impact
|
122 |
|
123 |
+
- **Hardware Type:** NVIDIA Tesla T4 GPU (free-tier Colab)
|
124 |
+
- **Hours used:** ~0.4 hours
|
125 |
+
- **Carbon Emitted:** Minimal (estimated using [ML Impact Calculator](https://mlco2.github.io/impact#compute))
|
126 |
|
127 |
+
## Technical Specifications
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
### Model Architecture and Objective
|
130 |
|
131 |
+
The model uses a decoder-only architecture optimized for causal language modeling tasks.
|
132 |
|
133 |
### Compute Infrastructure
|
134 |
|
135 |
+
- **Hardware:** NVIDIA Tesla T4
|
136 |
+
- **Software:**
|
137 |
+
- Transformers: 4.38.2
|
138 |
+
- PEFT: 0.8.2
|
139 |
+
- Accelerate: 0.27.1
|
140 |
+
- BitsAndBytes: 0.42.0
|
|
|
|
|
|
|
141 |
|
142 |
+
## Citation
|
|
|
|
|
143 |
|
144 |
**BibTeX:**
|
145 |
+
```bibtex
|
146 |
+
@misc{Jain2024gemmajs,
|
147 |
+
author = {Arnav Jain and collaborators},
|
148 |
+
title = {gemma-js-instruct-finetune},
|
149 |
+
year = {2024},
|
150 |
+
howpublished = {\url{https://huggingface.co/arnavj007/gemma-js-instruct-finetune}}
|
151 |
+
}
|
152 |
+
```
|
153 |
|
154 |
+
## More Information
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
For questions or feedback, contact [Arnav Jain](https://huggingface.co/arnavj007).
|
157 |
|
|