--- license: llama2 base_model: codellama/CodeLlama-7b-hf tags: - generated_from_trainer model-index: - name: stage3 results: [] library_name: peft --- [Visualize in Weights & Biases](https://wandb.ai/tarangkd2113/modal-client/runs/9rr35td6) # stage3 This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: True - _load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 - bnb_4bit_quant_storage: uint8 - load_in_4bit: False - load_in_8bit: True ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 40.0 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.6.0.dev0 - Transformers 4.41.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1