arnosimons commited on
Commit
a7a9d3f
1 Parent(s): 79c7c89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -97
README.md CHANGED
@@ -5,123 +5,40 @@ language:
5
  pipeline_tag: feature-extraction
6
  ---
7
 
8
- # Model Card for Model ID
9
 
10
- Astro-HEP-BERT is a bidirectional transformer based on Google's ``bert-base-uncased'' and additionally trained on paragraphs from scholarly articles related to astrophysics and/or high-energy physics (HEP).
11
 
12
- The main intended use of the model is to produce contextualized word embeddings for studying epistemic change in astrophysics and high-energy physics.
13
 
14
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
15
 
16
  ## Model Details
17
 
18
- ### Model Description
19
-
20
- <!-- Provide a longer summary of what this model is. -->
21
-
22
-
23
-
24
- - **Developed by:** Arno Simons
25
- - **Funded by [optional]:** European Research Council (ERC) under Grant agreement ID: [101044932](https://doi.org/10.3030/101044932)
26
- - **Model type:** [More Information Needed]
27
- - **Language(s) (NLP):** English
28
  - **License:** apache-2.0
 
29
 
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- The main intended use of the model is to produce contextualized word embeddings for studying epistemic change in astrophysics and high-energy physics.
41
-
42
 
43
  ## How to Get Started with the Model
44
 
45
  Use the code below to get started with the model.
46
 
47
- [More Information Needed]
48
-
49
- ## Training Details
50
-
51
- ### Training Data
52
-
53
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
54
-
55
- [More Information Needed]
56
-
57
- ### Training Procedure
58
-
59
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
60
-
61
- #### Preprocessing [optional]
62
-
63
- [More Information Needed]
64
-
65
-
66
- #### Training Hyperparameters
67
-
68
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
69
-
70
- #### Speeds, Sizes, Times [optional]
71
 
72
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
73
 
74
- [More Information Needed]
75
 
76
- ## Evaluation
77
-
78
- <!-- This section describes the evaluation protocols and provides the results. -->
79
-
80
-
81
-
82
- ## Environmental Impact
83
-
84
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
85
-
86
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
87
-
88
- - **Hardware Type:** [More Information Needed]
89
- - **Hours used:** [More Information Needed]
90
- - **Cloud Provider:** [More Information Needed]
91
- - **Compute Region:** [More Information Needed]
92
- - **Carbon Emitted:** [More Information Needed]
93
-
94
- ## Technical Specifications [optional]
95
-
96
- ### Model Architecture and Objective
97
-
98
- [More Information Needed]
99
-
100
- ### Compute Infrastructure
101
-
102
- [More Information Needed]
103
-
104
- #### Hardware
105
-
106
- [More Information Needed]
107
-
108
- #### Software
109
-
110
- [More Information Needed]
111
-
112
- ## Citation [optional]
113
-
114
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
115
 
116
  **BibTeX:**
117
 
118
- [More Information Needed]
119
 
120
  **APA:**
121
 
122
- [More Information Needed]
123
-
124
-
125
- ## Model Card Authors [optional]
126
 
127
- [More Information Needed]
 
5
  pipeline_tag: feature-extraction
6
  ---
7
 
8
+ # Model Card for **Astro-HEP-BERT**
9
 
10
+ **Astro-HEP-BERT** is a bidirectional transformer designed primarily to generate contextualized word embeddings for analyzing epistemic change in astrophysics and high-energy physics. Built upon Google's "bert-base-uncased," the model underwent additional training for three epochs using approximately 21.5 million paragraphs extracted from around 600,000 scholarly articles sourced from arXiv, all pertaining to astrophysics and/or high-energy physics (HEP). The sole training objective was masked language modeling.
11
 
12
+ For further insights into the model and the corpus, please refer to the Astro-HEP-BERT paper [link coming soon].
13
 
14
+ <!-- <a href="" target="_blank">Astro-HEP-BERT paper</a>. -->
15
 
16
  ## Model Details
17
 
18
+ - **Developer:** <a href="https://www.tu.berlin/en/hps-mod-sci/arno-simons" target="_blank">Arno Simons</a>
19
+ - **Funded by:** European Research Council (ERC) under Grant agreement ID: <a href="https://doi.org/10.3030/101044932" target="_blank">101044932</a>
20
+ - **Language (NLP):** English
 
 
 
 
 
 
 
21
  - **License:** apache-2.0
22
+ - **Parent model:** Google's "<a href="https://huggingface.co/google-bert/bert-base-uncased" target="_blank">bert-base-uncased</a>"
23
 
24
+ <!---
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ## How to Get Started with the Model
27
 
28
  Use the code below to get started with the model.
29
 
30
+ [Coming soon]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
 
32
 
33
+ ## Citation
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  **BibTeX:**
37
 
38
+ [Coming soon]
39
 
40
  **APA:**
41
 
42
+ [Coming soon]
 
 
 
43
 
44
+ -->