--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.82 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.0242 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.496 | 0.99 | 56 | 1.8467 | 0.27 | | 1.1313 | 2.0 | 113 | 1.1757 | 0.61 | | 1.2432 | 2.99 | 169 | 1.3774 | 0.58 | | 0.7301 | 4.0 | 226 | 0.9738 | 0.66 | | 0.5192 | 4.99 | 282 | 0.9078 | 0.73 | | 0.4163 | 6.0 | 339 | 0.9996 | 0.71 | | 0.2178 | 6.99 | 395 | 0.7683 | 0.79 | | 0.0814 | 8.0 | 452 | 0.9985 | 0.78 | | 0.0075 | 8.99 | 508 | 1.1056 | 0.78 | | 0.003 | 9.91 | 560 | 1.0242 | 0.82 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.2 - Datasets 2.17.0 - Tokenizers 0.15.1