--- language: - bn license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Base Bengali results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 bn type: mozilla-foundation/common_voice_16_0 config: bn split: test args: bn metrics: - name: Wer type: wer value: 48.48639410127692 --- # Whisper Base Bengali This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_16_0 bn dataset. It achieves the following results on the evaluation set: - Loss: 0.4033 - Wer: 48.4864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.084 | 3.03 | 1000 | 1.0815 | 89.0822 | | 0.4981 | 6.05 | 2000 | 0.5253 | 58.1107 | | 0.417 | 10.02 | 3000 | 0.4404 | 51.4890 | | 0.3759 | 13.04 | 4000 | 0.4114 | 49.1128 | | 0.3841 | 17.01 | 5000 | 0.4033 | 48.4864 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0