File size: 3,360 Bytes
ccf6bf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: cc-by-nc-4.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
base_model: facebook/nllb-200-3.3B
model-index:
- name: nllb-200-3.3B-Malayalam_English_Translationt_nllb6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nllb-200-3.3B-Malayalam_English_Translationt_nllb6
This model is a fine-tuned version of [facebook/nllb-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0031
- Bleu: 37.4644
- Rouge: {'rouge1': 0.6947858221991348, 'rouge2': 0.47528501248267296, 'rougeL': 0.643592904253675, 'rougeLsum': 0.6438336053077185}
- Chrf: {'score': 63.562323751931785, 'char_order': 6, 'word_order': 0, 'beta': 2}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Chrf |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------:|
| 1.1299 | 1.0 | 9400 | 1.0473 | 35.4794 | {'rouge1': 0.6827076206592405, 'rouge2': 0.4567713815837643, 'rougeL': 0.6303031579761407, 'rougeLsum': 0.6303637744842896} | {'score': 62.07772367684291, 'char_order': 6, 'word_order': 0, 'beta': 2} |
| 1.0391 | 2.0 | 18800 | 1.0172 | 36.5551 | {'rouge1': 0.6898802619220783, 'rouge2': 0.4678566080033477, 'rougeL': 0.6376152634193879, 'rougeLsum': 0.6378050818770977} | {'score': 62.79493404105809, 'char_order': 6, 'word_order': 0, 'beta': 2} |
| 0.9772 | 3.0 | 28200 | 1.0047 | 37.1999 | {'rouge1': 0.6940761673780116, 'rouge2': 0.4729467289482048, 'rougeL': 0.6422221741064402, 'rougeLsum': 0.6423854506325695} | {'score': 63.383659426629755, 'char_order': 6, 'word_order': 0, 'beta': 2} |
| 0.9322 | 4.0 | 37600 | 1.0021 | 37.3505 | {'rouge1': 0.6946177869994575, 'rouge2': 0.47460537713160267, 'rougeL': 0.643360432984222, 'rougeLsum': 0.6434552650502989} | {'score': 63.44418689943615, 'char_order': 6, 'word_order': 0, 'beta': 2} |
| 0.9109 | 5.0 | 47000 | 1.0031 | 37.4644 | {'rouge1': 0.6947858221991348, 'rouge2': 0.47528501248267296, 'rougeL': 0.643592904253675, 'rougeLsum': 0.6438336053077185} | {'score': 63.562323751931785, 'char_order': 6, 'word_order': 0, 'beta': 2} |
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.1
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.15.0 |