--- license: cc-by-nc-4.0 library_name: peft tags: - generated_from_trainer metrics: - bleu - rouge base_model: facebook/nllb-200-3.3B model-index: - name: nllb-200-3.3B-Malayalam_English_Translationt_nllb6 results: [] --- # nllb-200-3.3B-Malayalam_English_Translationt_nllb6 This model is a fine-tuned version of [facebook/nllb-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0031 - Bleu: 37.4644 - Rouge: {'rouge1': 0.6947858221991348, 'rouge2': 0.47528501248267296, 'rougeL': 0.643592904253675, 'rougeLsum': 0.6438336053077185} - Chrf: {'score': 63.562323751931785, 'char_order': 6, 'word_order': 0, 'beta': 2} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Chrf | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------:| | 1.1299 | 1.0 | 9400 | 1.0473 | 35.4794 | {'rouge1': 0.6827076206592405, 'rouge2': 0.4567713815837643, 'rougeL': 0.6303031579761407, 'rougeLsum': 0.6303637744842896} | {'score': 62.07772367684291, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 1.0391 | 2.0 | 18800 | 1.0172 | 36.5551 | {'rouge1': 0.6898802619220783, 'rouge2': 0.4678566080033477, 'rougeL': 0.6376152634193879, 'rougeLsum': 0.6378050818770977} | {'score': 62.79493404105809, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 0.9772 | 3.0 | 28200 | 1.0047 | 37.1999 | {'rouge1': 0.6940761673780116, 'rouge2': 0.4729467289482048, 'rougeL': 0.6422221741064402, 'rougeLsum': 0.6423854506325695} | {'score': 63.383659426629755, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 0.9322 | 4.0 | 37600 | 1.0021 | 37.3505 | {'rouge1': 0.6946177869994575, 'rouge2': 0.47460537713160267, 'rougeL': 0.643360432984222, 'rougeLsum': 0.6434552650502989} | {'score': 63.44418689943615, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 0.9109 | 5.0 | 47000 | 1.0031 | 37.4644 | {'rouge1': 0.6947858221991348, 'rouge2': 0.47528501248267296, 'rougeL': 0.643592904253675, 'rougeLsum': 0.6438336053077185} | {'score': 63.562323751931785, 'char_order': 6, 'word_order': 0, 'beta': 2} | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.36.1 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.15.0