--- library_name: transformers license: apache-2.0 base_model: lgris/bp400-xlsr tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-large-xlsr-tutorial-pt-br-5.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: pt split: None args: pt metrics: - name: Wer type: wer value: 0.7539496503496502 --- # wav2vec2-large-xlsr-tutorial-pt-br-5.0 This model is a fine-tuned version of [lgris/bp400-xlsr](https://huggingface.co/lgris/bp400-xlsr) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6661 - Wer: 0.7539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 5.0104 | 6.3492 | 200 | 1.2945 | 0.9866 | | 0.7801 | 12.6984 | 400 | 0.6661 | 0.7539 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1.dev0 - Tokenizers 0.20.0