|
|
|
from __future__ import print_function, division |
|
import glob |
|
import torch |
|
from skimage import io, transform, color |
|
import numpy as np |
|
import random |
|
import math |
|
import matplotlib.pyplot as plt |
|
from torch.utils.data import Dataset, DataLoader |
|
from torchvision import transforms, utils |
|
from PIL import Image |
|
|
|
|
|
class RescaleT(object): |
|
|
|
def __init__(self,output_size): |
|
assert isinstance(output_size,(int,tuple)) |
|
self.output_size = output_size |
|
|
|
def __call__(self,sample): |
|
imidx, image, label = sample['imidx'], sample['image'],sample['label'] |
|
|
|
h, w = image.shape[:2] |
|
|
|
if isinstance(self.output_size,int): |
|
if h > w: |
|
new_h, new_w = self.output_size*h/w,self.output_size |
|
else: |
|
new_h, new_w = self.output_size,self.output_size*w/h |
|
else: |
|
new_h, new_w = self.output_size |
|
|
|
new_h, new_w = int(new_h), int(new_w) |
|
|
|
|
|
|
|
|
|
|
|
img = transform.resize(image,(self.output_size,self.output_size),mode='constant') |
|
lbl = transform.resize(label,(self.output_size,self.output_size),mode='constant', order=0, preserve_range=True) |
|
|
|
return {'imidx':imidx, 'image':img,'label':lbl} |
|
|
|
class Rescale(object): |
|
|
|
def __init__(self,output_size): |
|
assert isinstance(output_size,(int,tuple)) |
|
self.output_size = output_size |
|
|
|
def __call__(self,sample): |
|
imidx, image, label = sample['imidx'], sample['image'],sample['label'] |
|
|
|
if random.random() >= 0.5: |
|
image = image[::-1] |
|
label = label[::-1] |
|
|
|
h, w = image.shape[:2] |
|
|
|
if isinstance(self.output_size,int): |
|
if h > w: |
|
new_h, new_w = self.output_size*h/w,self.output_size |
|
else: |
|
new_h, new_w = self.output_size,self.output_size*w/h |
|
else: |
|
new_h, new_w = self.output_size |
|
|
|
new_h, new_w = int(new_h), int(new_w) |
|
|
|
|
|
img = transform.resize(image,(new_h,new_w),mode='constant') |
|
lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True) |
|
|
|
return {'imidx':imidx, 'image':img,'label':lbl} |
|
|
|
class RandomCrop(object): |
|
|
|
def __init__(self,output_size): |
|
assert isinstance(output_size, (int, tuple)) |
|
if isinstance(output_size, int): |
|
self.output_size = (output_size, output_size) |
|
else: |
|
assert len(output_size) == 2 |
|
self.output_size = output_size |
|
def __call__(self,sample): |
|
imidx, image, label = sample['imidx'], sample['image'], sample['label'] |
|
|
|
if random.random() >= 0.5: |
|
image = image[::-1] |
|
label = label[::-1] |
|
|
|
h, w = image.shape[:2] |
|
new_h, new_w = self.output_size |
|
|
|
top = np.random.randint(0, h - new_h) |
|
left = np.random.randint(0, w - new_w) |
|
|
|
image = image[top: top + new_h, left: left + new_w] |
|
label = label[top: top + new_h, left: left + new_w] |
|
|
|
return {'imidx':imidx,'image':image, 'label':label} |
|
|
|
class ToTensor(object): |
|
"""Convert ndarrays in sample to Tensors.""" |
|
|
|
def __call__(self, sample): |
|
|
|
imidx, image, label = sample['imidx'], sample['image'], sample['label'] |
|
|
|
tmpImg = np.zeros((image.shape[0],image.shape[1],3)) |
|
tmpLbl = np.zeros(label.shape) |
|
|
|
image = image/np.max(image) |
|
if(np.max(label)<1e-6): |
|
label = label |
|
else: |
|
label = label/np.max(label) |
|
|
|
if image.shape[2]==1: |
|
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229 |
|
tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229 |
|
tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229 |
|
else: |
|
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229 |
|
tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224 |
|
tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225 |
|
|
|
tmpLbl[:,:,0] = label[:,:,0] |
|
|
|
|
|
tmpImg = tmpImg.transpose((2, 0, 1)) |
|
tmpLbl = label.transpose((2, 0, 1)) |
|
|
|
return {'imidx':torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)} |
|
|
|
class ToTensorLab(object): |
|
"""Convert ndarrays in sample to Tensors.""" |
|
def __init__(self,flag=0): |
|
self.flag = flag |
|
|
|
def __call__(self, sample): |
|
|
|
imidx, image, label =sample['imidx'], sample['image'], sample['label'] |
|
|
|
tmpLbl = np.zeros(label.shape) |
|
|
|
if(np.max(label)<1e-6): |
|
label = label |
|
else: |
|
label = label/np.max(label) |
|
|
|
|
|
if self.flag == 2: |
|
tmpImg = np.zeros((image.shape[0],image.shape[1],6)) |
|
tmpImgt = np.zeros((image.shape[0],image.shape[1],3)) |
|
if image.shape[2]==1: |
|
tmpImgt[:,:,0] = image[:,:,0] |
|
tmpImgt[:,:,1] = image[:,:,0] |
|
tmpImgt[:,:,2] = image[:,:,0] |
|
else: |
|
tmpImgt = image |
|
tmpImgtl = color.rgb2lab(tmpImgt) |
|
|
|
|
|
tmpImg[:,:,0] = (tmpImgt[:,:,0]-np.min(tmpImgt[:,:,0]))/(np.max(tmpImgt[:,:,0])-np.min(tmpImgt[:,:,0])) |
|
tmpImg[:,:,1] = (tmpImgt[:,:,1]-np.min(tmpImgt[:,:,1]))/(np.max(tmpImgt[:,:,1])-np.min(tmpImgt[:,:,1])) |
|
tmpImg[:,:,2] = (tmpImgt[:,:,2]-np.min(tmpImgt[:,:,2]))/(np.max(tmpImgt[:,:,2])-np.min(tmpImgt[:,:,2])) |
|
tmpImg[:,:,3] = (tmpImgtl[:,:,0]-np.min(tmpImgtl[:,:,0]))/(np.max(tmpImgtl[:,:,0])-np.min(tmpImgtl[:,:,0])) |
|
tmpImg[:,:,4] = (tmpImgtl[:,:,1]-np.min(tmpImgtl[:,:,1]))/(np.max(tmpImgtl[:,:,1])-np.min(tmpImgtl[:,:,1])) |
|
tmpImg[:,:,5] = (tmpImgtl[:,:,2]-np.min(tmpImgtl[:,:,2]))/(np.max(tmpImgtl[:,:,2])-np.min(tmpImgtl[:,:,2])) |
|
|
|
|
|
|
|
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0]) |
|
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1]) |
|
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2]) |
|
tmpImg[:,:,3] = (tmpImg[:,:,3]-np.mean(tmpImg[:,:,3]))/np.std(tmpImg[:,:,3]) |
|
tmpImg[:,:,4] = (tmpImg[:,:,4]-np.mean(tmpImg[:,:,4]))/np.std(tmpImg[:,:,4]) |
|
tmpImg[:,:,5] = (tmpImg[:,:,5]-np.mean(tmpImg[:,:,5]))/np.std(tmpImg[:,:,5]) |
|
|
|
elif self.flag == 1: |
|
tmpImg = np.zeros((image.shape[0],image.shape[1],3)) |
|
|
|
if image.shape[2]==1: |
|
tmpImg[:,:,0] = image[:,:,0] |
|
tmpImg[:,:,1] = image[:,:,0] |
|
tmpImg[:,:,2] = image[:,:,0] |
|
else: |
|
tmpImg = image |
|
|
|
tmpImg = color.rgb2lab(tmpImg) |
|
|
|
|
|
|
|
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.min(tmpImg[:,:,0]))/(np.max(tmpImg[:,:,0])-np.min(tmpImg[:,:,0])) |
|
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.min(tmpImg[:,:,1]))/(np.max(tmpImg[:,:,1])-np.min(tmpImg[:,:,1])) |
|
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.min(tmpImg[:,:,2]))/(np.max(tmpImg[:,:,2])-np.min(tmpImg[:,:,2])) |
|
|
|
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0]) |
|
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1]) |
|
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2]) |
|
|
|
else: |
|
tmpImg = np.zeros((image.shape[0],image.shape[1],3)) |
|
image = image/np.max(image) |
|
if image.shape[2]==1: |
|
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229 |
|
tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229 |
|
tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229 |
|
else: |
|
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229 |
|
tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224 |
|
tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225 |
|
|
|
tmpLbl[:,:,0] = label[:,:,0] |
|
|
|
|
|
tmpImg = tmpImg.transpose((2, 0, 1)) |
|
tmpLbl = label.transpose((2, 0, 1)) |
|
|
|
return {'imidx':torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)} |
|
|
|
class SalObjDataset(Dataset): |
|
def __init__(self,img_name_list,lbl_name_list,transform=None): |
|
|
|
|
|
|
|
self.image_name_list = img_name_list |
|
self.label_name_list = lbl_name_list |
|
self.transform = transform |
|
|
|
def __len__(self): |
|
return len(self.image_name_list) |
|
|
|
def __getitem__(self,idx): |
|
|
|
|
|
|
|
|
|
image = io.imread(self.image_name_list[idx]) |
|
imname = self.image_name_list[idx] |
|
imidx = np.array([idx]) |
|
|
|
if(0==len(self.label_name_list)): |
|
label_3 = np.zeros(image.shape) |
|
else: |
|
label_3 = io.imread(self.label_name_list[idx]) |
|
|
|
label = np.zeros(label_3.shape[0:2]) |
|
if(3==len(label_3.shape)): |
|
label = label_3[:,:,0] |
|
elif(2==len(label_3.shape)): |
|
label = label_3 |
|
|
|
if(3==len(image.shape) and 2==len(label.shape)): |
|
label = label[:,:,np.newaxis] |
|
elif(2==len(image.shape) and 2==len(label.shape)): |
|
image = image[:,:,np.newaxis] |
|
label = label[:,:,np.newaxis] |
|
|
|
sample = {'imidx':imidx, 'image':image, 'label':label} |
|
|
|
if self.transform: |
|
sample = self.transform(sample) |
|
|
|
return sample |